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Problem description

@ Growing # of experiments across environments and individuals
E.g. Male/female enterpreneurs in different countries

e Moved institutions (JPAL) towards meta-analysis/heterogeneity

e Goal often is to aggregate evidence across all individuals
o Aggregation relies on model assumptions (e.g. via shrinkage/sparsity)

@ But goal of such institutions is also to direct research

o ‘“reasonable” models may be predictive only for some individuals
o for some units, effects may just be arbitrary different
= Pooling information across all units often misleading

@ Goal: learn from the data when and how evidence is portable across
contexts/individuals and when instead we need more evidence
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Empirical illustrations

Unconditional Cash Transfers:
A Bayesian Meta-Analysis of Randomized Evaluations
in Low and Middle Income Countries

Tommaso Crosta, Dean Karlan, Finley Ong,
Julius Riischenpdhler, and Christopher Udry*

March 28, 2024

Abstract

We use Bayesian meta-analysis methods to estimate the impact of unconditional cash
transfers (UCTs) on twelve primary outcomes from 114 studies of 73 UCT programs in
middle and low income countries. Cash transfers generate strong and positive average
treatment effects on nine of twelve outcomes: total consumption, food consumption, food

security, income, assets, labor supply, children height-for-age, schooling, and psychological

. houscholds consume more of streams and invest

wel-being. We drave six conclusions
more of lump sums, however once stream programs end the impacts mirror those of lump
sum, indicating some propensity to save  porion of stream transfers. Second, we find long-
run treatment ffects zemain strong, but the effets of lump sum transfers measued more
than 18 months afer the transfer are substantialy smaller. Third, as returns are inear with

respect 1o grant amount, we do not find evidence of cither threshold-based poverty traps

or diminishing marginal returns (within the observed range of transfers). Fourth, effects on
consumption and income are greater for UCTs targeted to women. Fifth, including light-
touch framing related to child welfare or food security generates weakly stronger impacts.

Sixth, positive impacts on labor supply and income suggest no evidence of “dependency”

theories that cash transfers demotivate income-generating activity on average.
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Empirical illustrations

Unconditional Cash Transfer Why Do People Stay Poor?

. . . Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, Anton Heil
A Bayesian Meta-Analysis of Randomize

The Quarterly Journal of Economics, Volume 137, Issue 2, May 2022, Pages 785-844,

in Low and Middle Income Couy httes/doiorg/10.1093/cje/djabods
Published: 07 December 2021

Tommaso Crosta, Dean Karlan, Finley C (¢ e permissions =2 Share
Julius Riischenphler, and Christopher {

March 28, 2024 Abstract

There are two broad views as to why people stay poor. One emphasizes
differences in fundamentals, such as ability, talent, or motivation. The poverty
traps view emphasizes differences in opportunities that stem from access to
wealth. To test these views, we exploit a large-scale, randomized asset transfer
and an 11-year panel of 6,000 households who begin in extreme poverty. The

Abstract

We use Bayesian meta-analysis methods to estimate the impact of

transfers (UCTS) on twelve primary outcomes from 114 studies of 7¢
setting is rural Bangladesh, and the assets are cows. The data support the

poverty traps view—we identify a threshold level of initial assets above which
households accumulate assets, take on better occupations (from casual labor in
agriculture or domestic services to running small livestock businesses), and
grow out of poverty. The reverse happens for those below the threshold.
Structural estimation of an occupational choice model reveals that almost all

middle and low income countries. Cash transfers generate strong a
treatment effects on nine of twelve outcomes: total consumption, food

security, income, assets, labor supply, children height-for-age, schoolin

well-being. We draw six conclusions: First, houscholds consume more o
more of lump sums, however once stream programs end the impacts 1

i Fome propensiy ki beneficiaries are misallocated in the work they do at baseline and that the gains

arising from eliminating misallocation would far exceed the program costs. Our
findings imply that large transfers, which create better jobs for the poor, are an
effective means of getting people out of poverty traps and reducing global
poverty.

run treatment effeets remain strong, but the effects of lump sum trans
than 18 months after the transfer are substantially smaller. Third, as rel

respect o grant amount, we do not find evidence of either threshold-
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Abstract

We use Bayesian meta-analysis methods to estimate the impact of
transfers (UCTs) on twelve primary outcomes from 114 studies of 70
middle and low income countries. Cash transfers generate strong a
treatment effects on nine of twelve outcomes: total consumption, food
security, income, assets, labor supply, children height-for-age, schoolin

well-being. We draw six conclusions: First, households o

Clare Balboni, Oriana Bandiera, Robin Burgess, Maitreesh Ghatak, Anton Heil

The Quarterly Journal of Economics, Volume 137, Issue 2, May 2022, Pages 785-844,

Implementation Matters: Generalizing
Treatment Effects in Education

Noam Angrist
University of Oxford, Youth Impact

Rachael Meager
London School of Economics

more of lump sums, however once stream programs end the impacts 1
sum, indicating some propensity to save a portion of stream transfers. §
run treatment effeets remain strong, but the effects of lump sum trans
than 18 months after the transfer are substantially smaller. Third, as rel
respect o grant amount, we do not find evidence of either threshold-
o diminishing marginal returns (within the observed range of transfers
consumption and income are greater for UCTs targeted to women. Fi
touch framing related to child welfare or food security generates weakly

Sixth, positive impacts on labor supply and income suggest no evidence

Targeted i is one of the most effecti inlow- and middl
countries, yet reported impacts vary by an order of magnitude. We study this variation by aggregating evidence

from prior randomized trials across five contexts, and use the results to inform a new randomized trial. We find

two fact lain most of the in effects contexts: the degree of implementation
intenti or d program delivery model (teachers or volunteers).
for these i factors yields high ity, with similar effect sizes across studies.

Thus, reporting treatment-on-the-treated effects, a practlce ‘which remains llmltsd can enhance external
validity. We also introduce a new Bayesian work to formally incorp: ion metrics into
evidence aggregation. Results show targeted instruction delivers average learning gains of 042 SD when taken
u and 0.85 SD when impl d with high fidelity. To investi 1 canbe improved in

how i

theories that cash transfers demotivate i activity on av

Davide Viviano

We runa new d trial of a targeted instruction program in Botswana. Results
demonstrate that implementation can be improved in the context of a scaling program with large causal effects
on learning, While research on implementation has been limited to date, our findings and framework reveal its
importance for impact evaluation and generalizability.
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Empirical illustrations

WHEN LESS IS MORE:
EXPERIMENTAL EVIDENCE ON INFORMATION DELIVERY
DURING INDIA’S DEMONETIZATION

ABHIJIT BANERJEE*, EMILY BREZAS, ARUN G. CHANDRASEKHAR!, AND BENJAMIN GOLUB'
ing

ABSTRACT. How should information be di i d to large populations? The options

include broadcasting (e.g., via mass media) and informing a small number of “seeds” who

then spread the message. While it may seem natural to try to reach the maximum number of

people from the beginning, we show, theoretically and experimentally, that when incentives

to seek information are endogenous, this is not necessarily true. In a field experiment

during the 2016 Indian demonetization, we varied how information about the policy was mics

delivered to villages along three dimensions: how many people were initially informed (i.e.,

broadcasting versus seeding); whether the identities of the initially informed were made

common knowledge; and number of facts delivered (2 versus 24). The quality of information

aggregation was measured in three ways: the volume of conversations about demonetization, and middle-income

the level of knowledge about demonetization rules, and the likelihood of making the correct tion by aggregating evidence
ew randomized trial. We find
of implementation
‘hers or volunteers).

choice in a strongly incentivized decision where understanding the rules is key. Under

common knowledge, seeding dominates broadcasting. Moreover, common knowledge makes

seeding more effective but broadcast less so. These comparisons hold for all three outcomes Tar effect sizes across studies.
and underscore the importance of the incentive to engage in social learning. Using data on , can enhance external
differential behavior across different ability categories, we interpret our results via a model ’lFmemam“ metrics into
N . . . zains of 0.42 SD when taken
of image concerns, and also consider several alternative explanations. ntation can be improved in
. s - s . L . . .
theories that cash rix of 6.4 percentage points over a baseli We runa new trial of a targeted instruction program in Botswana. Results

demonstrate that implementation can be improved in the context of a scaling program with large causal effects
on learning, While research on implementation has been limited to date, our findings and framework reveal its
importance for impact evaluation and generalizability.

of the students using our preferred p
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This paper in one slide

e We conduct experiments (pilots) with heterogeneous individuals

o Types x € X + |X| large (covariates, experiment type, country, ...)
o Each individual experience an effect 7(x)
o Observe noisy unbiased estimates #(x) and 7(x)? of 7(x) and V(#(x))
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This paper in one slide

e We conduct experiments (pilots) with heterogeneous individuals

o Types x € X + |X| large (covariates, experiment type, country, ...)
o Each individual experience an effect 7(x)

o Observe noisy unbiased estimates 7(x) and 7(x)? of 7(x) and V(#(x))
@ Goal is two fold:

o Predict 7(x) when information is portable across groups
o Admit ignorance and claim for more evidence if generalizability fails
= Learn from the data what we do (not) know to inform future research

@ Steps of the analysis

o Introduce decision problem for generalizability
e Construct (robust) predictions for units where generalizability occurs
e Theoretical guarantees and implications for anti-poverty programs
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Related literature

@ Meta-analysis and transfer learning [Borenstein et al., 2021; Meager, 2022;
Crosta et al., 2024; Menzel, 2023; Ishiara and Kitagawa, 2023; Deeb and de Chaisemartin,
2019; Adjaho and Chistensen, 2022; Andrews et al., 2022; ...]

@ Policy learning and effect heterogeneity [Athey and Wager, 2019; Kitagawa

and Tetenov, 2018; Manski, 2004; Murphy, 2003; Athey and Wager, 2021; Kennedy, 2023;
Chernozhukov et al., 2018; Bonhomme and Manresa, 2015; Viviano and Bradic, 2024; ...]
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Crosta et al., 2024; Menzel, 2023; Ishiara and Kitagawa, 2023; Deeb and de Chaisemartin,
2019; Adjaho and Chistensen, 2022; Andrews et al., 2022; ...]

@ Policy learning and effect heterogeneity [Athey and Wager, 2019; Kitagawa
and Tetenov, 2018; Manski, 2004; Murphy, 2003; Athey and Wager, 2021; Kennedy, 2023;
Chernozhukov et al., 2018; Bonhomme and Manresa, 2015; Viviano and Bradic, 2024; ]

= Literature forces predictions across all units (no ignorance component)

o Site selection/sampling [e.g., Olea et al., 2024; Gechter et al., 2024;...|
= Uses a model to choose a site among set of sites for experiment

= Here evidence aggregation: pilot to study where to rely on current data
for predictions and where run an experiment

@ Rejection options in ML [Chow, 1970; Cortes et al., 2016; Franc et al., 2023; ...] ,
Robust statistics [e.g., Huber and Ronchetti, 2011; Broderick et al., 2020]

= Reduce observations influence/provide robustness metric
= Here model misspecification + future experimentation (for CATEs)
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@ Learning generalizability from the data
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A framework to learn what is generalizable

Make a prediction about 7(x) using (existing) data

Admit ignorance about 7(x) and elicit more evidence

e Making a prediction = predict 7(x) with ¢(x),¢ € F
o F characterizes prior/communication constraints/data feasibility
e But not all 7(x) may be well approximated by ¢(x)

@ Admit ignorance = policy function in a set [1

() = {1 if make a prediction about 7(x) reT

0 if admit ignorance at cost o2

o [ has bounded complexity (constraints/feasibility)

= "Detect for which units cannot predict well 7(x)"

Davide Viviano June, 2025 7/25



Generalizability-aware predictions: population version

@ For now, ignore sampling uncertainty

@ For 02 = 0o the population objective reads as

min <T(X) — (;S(X))2

pcF .

loss from prediction
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Generalizability-aware predictions: population version

@ For now, ignore sampling uncertainty
@ For 02 > 0 the population objective defined as L, (¢, 7) is
2
min Z (T(X) - d)(x)) 7(x) + o?(1 — 7(x))
—_——

well,peF <

. cost of ignorance
loss from prediction g

Equivalent formulations
@ Minimize error with minimum number of units not in ignorance

@ Maximizing number of units not in ignorance with constraints on error

= Robustify predictions by making predictions only over subset

weﬁ@er; () - ¢(X))27r(x), st. zxj 7(x) > A

= Existing estimators for effect heterogeneity always pick 0% = oo
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[llustration [Calibrated to Banerjee et al., 2015]

Trade-off between
@ how general your model/predictions are

@ vs. prediction accuracy
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[llustration [Calibrated to Banerjee et al., 2015]

Trade-off between
@ how general your model/predictions are

@ vs. prediction accuracy

o
w

0.2

o
N

0.1

e

Share non generalizable
*
Share error increase

e
o
*
*

0.0 *

Interpretation of o2
@ Cost from collecting more data about x in a follow up experiment

@ Tolerable inaccuracy of the model given data
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@ Decision theoretic motivation for scientific communication
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Motivation: from models to experiments

@ Researchers observe/can report ¢ € F (F “simple” = negligible estimation error)
@ Researchers are also given the option to sample (e.g., from new study)

7 (x)[(x) ~ N (7 (x), 0?)
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7 (x)[(x) ~ N (7 (x), 0?)

@ Audience forms posterior E, [7(x)|¢, 7""] under prior 7|F ~ p,,. Define risk
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Motivation: from models to experiments

@ Researchers observe/can report ¢ € F (F “simple” = negligible estimation error)
@ Researchers are also given the option to sample (e.g., from new study)

7 (x)[(x) ~ N (7 (x), 0?)

@ Audience forms posterior E, [7(x)|¢, 7""] under prior 7|F ~ p,,. Define risk

2
Ry(607) =B | (00 - Eyfr(0lo. 7)) [, 7]
e F 7|7 ~ N(7,02) E,[r|F, "] Ry (¢, 7)
| | | |
| x | |
Model prediction New data Audience Risk

from pilot
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Motivation: from models to experiments

@ Misspecification in prior p,: For some ¢ € F,m € [l:

= ¢(x) if m(x) =1
TeIIF {N N(b(x),n?) otherwise

b arbitrary + n? “radius” of heterogeneity
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Motivation: from models to experiments

@ Misspecification in prior p,: For some ¢ € F,m € [l:

= ¢(x) if m(x) =1
TeIIF {N N(b(x),n?) otherwise

b arbitrary + n? “radius” of heterogeneity

@ Prior: ¢ is only correct locally

Thm (Informal) For some ¢, ,

Lo(p, ) = nli_}mooE [(T(X) —E,[7(x)|F, 7—"e‘,,,])2‘7_7 }_}

= We balance local misspecification with exploration
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© Estimation and theoretical guarantees
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Estimation with existing (pilot) study

@ How to construct optimal ¢(x) from previous studies?

@ Observe noisy unbiased estimates #(x) and 7(x)? of 7(x) and V(#(x))
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Estimation with existing (pilot) study

@ How to construct optimal ¢(x) from previous studies?
@ Observe noisy unbiased estimates #(x) and 7(x)? of 7(x) and V(#(x))

o Estimate #,$ by minimizing empirical loss [J() defined as

. ~ 2 ~ 2 2
min T\ X) — X — X WX ) — o (X
_min S (A0 - 000) = 0092 ) ()
x Y est variance cost of ignorance

est prediction err
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Estimation with existing (pilot) study

How to construct optimal ¢(x) from previous studies?

Observe noisy unbiased estimates #(x) and 7(x)? of 7(x) and V(#(x))

Estimate #, ¢ by minimizing empirical loss [J() defined as

e, {0 -000) = 362 Jra - Pt

X . )
Y. est variance cost of ignorance
est prediction err

@ Basic intuition

o here |X| is large/ characterizes effective sample size
e we need to pool some x to reduce noise, F posit how to pool obs/
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Estimation with existing (pilot) study

How to construct optimal ¢(x) from previous studies?

Observe noisy unbiased estimates #(x) and 7(x)? of 7(x) and V(#(x))

Estimate #, ¢ by minimizing empirical loss [J() defined as

wel,peF <

min Z{(%(X)qu(x)f— i) br(x) - oPr(x)

M est variance cost of ignorance
est prediction err

@ Basic intuition

o here |X| is large/ characterizes effective sample size
e we need to pool some x to reduce noise, F posit how to pool obs/

o To decide when to pool, compare between to within variation
o If between variation much larger than within, do not pool
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Example with simple regression tree

e Each "unit” is a (small) group of obs/ with same x

@ At each leaf node, either predict (with sample mean) or abstain
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Example with simple regression tree

e Each "unit” is a (small) group of obs/ with same x

@ At each leaf node, either predict (with sample mean) or abstain

X(1) <t
X(2) <t X(3) <t3
Ignorance Ignorance
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Example with simple regression tree

e Each "unit” is a (small) group of obs/ with same x

@ At each leaf node, either predict (with sample mean) or abstain

X(1) <t
X(2) <t X(3) <t3
Ignorance Ignorance

@ For each leaf node (and given splits (x < t)), assign to ignorance if:
Between variation of 7(x) exceeds by o sum of within variations

Davide Viviano June, 2025 16 /25



Example with simple regression tree

e Each "unit” is a (small) group of obs/ with same x

@ At each leaf node, either predict (with sample mean) or abstain

X(1) <t
X(2) <t X(3) <t3
Ignorance Ignorance

@ For each leaf node (and given splits (x < t)), assign to ignorance if:
Between variation of 7(x) exceeds by o sum of within variations

@ Repeat and search for combinations of splits that minimize loss
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More general class of predictions and policies

@ « € G groups individuals into G groups with complexity VC(G)
@ Predictions are the same in each group (call them ¢ € F,,)

Fa= {01600 = 6(x) if a(x) = a(x)}
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More general class of predictions and policies

@ « € G groups individuals into G groups with complexity VC(G)
@ Predictions are the same in each group (call them ¢ € F,,)

Fa={6:0(x) = () if a(x) = a(x)}
@ Each group g > 1 has either zero individuals, or a few of them (s|x]) :

)1 ifa(x) >1 (generalizable)
Talx) = 0 ifa(x)=1 (ignorance)
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More general class of predictions and policies

@ « € G groups individuals into G groups with complexity VC(G)
@ Predictions are the same in each group (call them ¢ € F,,)

Fa= {01600 = 6(x) if a(x) = a(x)}

@ Each group g > 1 has either zero individuals, or a few of them (s|x]) :

)1 ifa(x) >1 (generalizable)
Talx) = 0 ifa(x)=1 (ignorance)

E.g. Reg trees and group fixed effects with bounded complexity
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Main guarantee: regret

Thm Let #(x),(x)? have bounded third moment. Study the regret

E[Lg(é,fr)— min La(¢>,7ra)]

a69,¢€fa
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Main guarantee: regret

Thm Let #(x),(x)? have bounded third moment. Study the regret

ol _ VC(9)
E |:L0'(¢)7r) - 04681;'32}'& Lo‘(gbyﬂ-a)] S COG W

= proof combines chaining argument with group-fixed effects
= bounds only depend on G+/VC(G) and distribution free
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Main guarantee: regret

Thm Let #(x),(x)? have bounded third moment. Study the regret

ol _ VC(9)
E |:Lo'(¢)7r) - 04631;'32}'& Lo‘(gbyﬂ-a)] S COG W

= proof combines chaining argument with group-fixed effects
= bounds only depend on G+/VC(G) and distribution free

Additional results in the paper:
@ minimax rate (n~1/2) as function of total n
@ guarantees with weights for observations x

@ computational algorithms for regression trees ( )

Davide Viviano June, 2025 18 /25



Main guarantee: regret

Thm Let #(x),(x)? have bounded third moment. Study the regret

VC(G)

a€G,bEFa | X|

E[Lg(gg,fr)— min Lg(¢,7ra)]gcoc

= proof combines chaining argument with group-fixed effects
= bounds only depend on G+/VC(G) and distribution free

Additional results in the paper:
@ minimax rate (n~1/2) as function of total n
@ guarantees with weights for observations x
@ computational algorithms for regression trees ( )
@ asymptotic inference on the set of optimal partitions: ( )

Ho: G €G* G* = {a eqg: min Lo(¢,7ar) = ¢rr€1-|7[_1 Lo (o, 71'&)}

a’'eG,peF

Davide Viviano June, 2025 18 /25



@ Empirical application and conclusions
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Empirical illustration

@ Heterogeneity in anti-poverty programs often depends on baseline
poverty level. Can we find predictable heterogeneity?

= Study multifacet program in six countries [Banerjee et al., 2015]
= Implement Generalized Aware trees with several covariates + country.
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@ Heterogeneity in anti-poverty programs often depends on baseline
poverty level. Can we find predictable heterogeneity?

= Study multifacet program in six countries [Banerjee et al., 2015]
= Implement Generalized Aware trees with several covariates + country.

@ Setup

o We consider depth three tree, with G < 4
e Obtain 7(x) through IPW and #j(x) with lasso (possible also to use
non-parametric estimators)

o Consider three outcomes with same group structure «
o Look at 02 so that < 15% are non-generalizable
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Empirical illustration

@ Heterogeneity in anti-poverty programs often depends on baseline
poverty level. Can we find predictable heterogeneity?
= Study multifacet program in six countries [Banerjee et al., 2015]
= Implement Generalized Aware trees with several covariates + country.

@ Setup
o We consider depth three tree, with G < 4
e Obtain 7(x) through IPW and #j(x) with lasso (possible also to use
non-parametric estimators)
o Consider three outcomes with same group structure «
o Look at 02 so that < 15% are non-generalizable

o Findings

Large effects for ultra-poor individuals

Effects are arbitrary heterogeneous for richer individuals (within poor)
Comparable existing regressions report unstable estimates

Policy interventions should consider gather more evidence on richer
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Compositions of archetypes by country

Archetype l 1 B 2 B 3 W Ignorance

Food * o *
Consumption{ ¢ * o
Asset * o *

Eth/ Ghana Hond/ India Pak/ Peru 0.0 0.2 0.4
Effect

Country

LBors

S o)
5 g
O 050 9
% 5
o O
N 0.25

June, 2025
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Predicted treatment effects with two-depth tre3

_
85.01
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=}
[2]
§ 4.5
-3%
2
24.0
5
L 35 29% (x% indicating treatment effect)
' -0.5 0.0 0.5

Baseline Asset Index

Method @® Archetype (G-Aware Tree) ® Ignorance (G-Aware Tree)|
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Predicted treatment effects with two-depth tree

-

C 4

-2 5.0 22% -3%

a

=

54.5

(G] —3%

2

% 4.0

<

>

o 35 (x% indicating treatment effect)
-0.5 0.0 0.5

Baseline Asset Index

thod @ Archetype (G-Aware Tree) ® Ignorance (G—Aware Tree) @ Simple Tree
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Calibrated simulations

@ Calibrate simulations to estimated DGP with estimated tree
@ For 4% of observations in ignorance, generate treatment effects from Cauchy

@ Compute error conditional on treatment effects
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Calibrated simulations

@ Calibrate simulations to estimated DGP with estimated tree
@ For 4% of observations in ignorance, generate treatment effects from Cauchy

@ Compute error conditional on treatment effects

s 4 s '
. s
3 .
o .
e .
LTJO * *
8
| L
-3
* * * * * * *
0 2 3

i
Degree of Heterogeneity (scale)

Method ¢ Bestcompetitor (EBayes,grfrcart) ¢ Correct tree without ignorance ¢ G-aware tree
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Conclusions

@ Goal should be produce predictions but also direct research

= Learn from the data what we know and what we do not know
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@ Propose abstaining from predictions at cost of experimentation
@ We propose estimators to optimize over predictions and ignorance

@ We study theoretical properties and provide an application
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Conclusions

@ Goal should be produce predictions but also direct research

= Learn from the data what we know and what we do not know

@ Propose abstaining from predictions at cost of experimentation
@ We propose estimators to optimize over predictions and ignorance

@ We study theoretical properties and provide an application

What is next?
@ Implications for experimental design
@ Application to ensamble methods

@ Large scale empirical implementation
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Thanks very much, questions?
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Computational complexity

G is class of trees with G leaf nodes, p covariates and n observaions:

Thm Computational complexity is O(n®p®).
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Computational complexity

G is class of trees with G leaf nodes, p covariates and n observaions:

Thm Computational complexity is O(n®p®).

Intuition
o let G=2

@ Run over all covariates and splits (at most pn)
@ lIgnorance decision (7(x) = 0) is independent at each leaf node
© Loss function equal some of losses betw/ leaf nodes
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Computational complexity

G is class of trees with G leaf nodes, p covariates and n observaions:

Thm Computational complexity is O(n®p®).

Intuition
o let G=2

@ Run over all covariates and splits (at most pn)
@ lIgnorance decision (7(x) = 0) is independent at each leaf node
© Loss function equal some of losses betw/ leaf nodes

@ For G > 2 we can repeat recursively

@ Run over all covariates and splits (at most pn)
@ Solve each subproblem independently within each split
© Loss function equal some of losses from each subproblem
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Computational complexity

G is class of trees with G leaf nodes, p covariates and n observaions:

Thm Computational complexity is O(n G G) ( )

/\

X@3)
Ignorance =2 lIgnorance
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Inference on optimal partitions G*

@ Estimate & out-of-sample and construct test stat and quantile g,,1—~

Ta(@%) = min (7%, ¢a) = min Lo(n%,6a)
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Inference on optimal partitions G*

@ Estimate & out-of-sample and construct test stat and quantile g,,1—~
7’\'(1(070) = min Zg(ﬂa, Do) — ¢n€1ij_pd Zg(ﬂ'&, ba)

PEFa

such that lim x| P (,/|X|fa(a°) < qa’l,v(é})|d> >1 -y (CD)
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Inference on optimal partitions G*

@ Estimate & out-of-sample and construct test stat and quantile g,,1—~

Ta(@%) = min (7%, ¢a) = min Lo(n%,6a)

such that lim x| P (\/|X|'fa(d°) < qa’l,v(a)m) >1 -y (CD)

= Expression for q,,1—~ in the paper provides exact coverage for
non-degenerate distribution of T, and conservative coverage otherwise
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Inference on optimal partitions G*

@ Estimate & out-of-sample and construct test stat and quantile g,,1—~

Ta(@%) = min (7%, ¢a) = min Lo(n%,6a)

such that lim x| P (\/|X|'fa(d°) < qa’l,v(a)m) >1 -y (CD)

= Expression for q,,1—~ in the paper provides exact coverage for
non-degenerate distribution of T, and conservative coverage otherwise

@ For a given subset G’ of interest estimate the set of optimal «

gA,y = {a ceg \/mj\—a(é\é) < Qa,l—v(@)}’
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Inference on optimal partitions G*

@ Estimate & out-of-sample and construct test stat and quantile g,,1—~

Ta(@%) = min (7%, ¢a) = min Lo(n%,6a)

such that lim x| P (\/|X|'fa(d°) < qa’l,v(a)m) >1 -y (CD)
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non-degenerate distribution of T, and conservative coverage otherwise

@ For a given subset G’ of interest estimate the set of optimal «
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@ Estimate & out-of-sample and construct test stat and quantile g,,1—~

Ta(@%) = min (7%, ¢a) = min Lo(n%,6a)

such that lim x| P (\/|X|'fa(d°) < qa’l,v(a)m) >1 -y (CD)

= Expression for q,,1—~ in the paper provides exact coverage for
non-degenerate distribution of T, and conservative coverage otherwise
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Inference on optimal partitions G*

@ Estimate & out-of-sample and construct test stat and quantile g,,1—~

Ta(@%) = min (7%, ¢a) = min Lo(n%,6a)

such that lim x| P (\/|X|'fa(d°) < qa’l,v(a)m) >1 -y (CD)

= Expression for q,,1—~ in the paper provides exact coverage for
non-degenerate distribution of T, and conservative coverage otherwise

@ For a given subset G’ of interest estimate the set of optimal «

Gy ={a e VIXTu(@) S dua+(@)}, 7=/

Thm Under regularities, lim| x|, P(G* NG’ C QAV) >1—~* Va e G with
L;() — mings Ly () bounded from below, lim| |0 P € G,)=0
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