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A Proof of the Lemmas in the Main Text

A.1 Proof of Lemma 2.1 and 4.3

We prove Lemma 4.3, while Lemma 2.1 directly follows from stationarity. Note first that under the null

hypothesis Y o
0t = Y 0

0t. As a result, we can write (under the null) (Y o
0t − Ȳt, Y 1

1t − Ȳt, · · · , Ynt − Ȳt, Z0:n,t) =

(Y 0
0t − Ȳt, Y 1

1t − Ȳt, · · · , Ynt − Ȳt, Z0:n,t). Under Assumption 1, we have

(Y 0
0t − Ȳt, Y 1

1t − Ȳt, · · · , Ynt − Ȳt, Z0:n,t) = (ε0
0t − ε̄t + ι00 − ῑ0, · · · , ε0

nt − ε̄t + ι0n − ῑ0, Z0:n,t)

where ε̄t = 1
n

∑J
j=1 εjt, ῑ

0 = 1
n

∑J
j=1 ι

0
j . Stationarity directly follows from Assumption 6.

A.2 Proof of Lemma 2.2 and 4.2

We prove Lemma 4.2. Lemma 2.2 follows directly from Assumption 1 and exogeneity of T0 (Assumption

2). First, note that under Assumption 2 the distribution of potential outcomes and covariates remains

invariant conditionally or unconditionally on T0. Observe that under Assumption 6, we have

τ =
1

T − T0

∑
t>T0

E
[
Y 1

0t

]
− κt − ι0j − E

[
ε0
jt

]
=

1

T − T0

∑
t>T0

E
[
Y 1

0t

]
− κt − ι0j .
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where, by stationarity and the presence of the unit fixed effect ι0j , E
[
ε0
jt

]
= 0, since the expectation is

incorporated in the component ι0j . Observe that we can write

1

n

∑
j>0

E
[
Y 0
jt

∣∣∣T0

]
=

1

n

∑
j>0

E
[
Y 0
jt

]
= κ0

t +
1

n

∑
j>0

ι0j ,

where, again, E[ε0
jt] = 0. Under Assumption 6

1

T0

T0∑
s=1

{
E
[
Y 0

0s|T0

]
− 1

n

∑
j>0

E
[
Y 0
js

∣∣∣T0

]}
= ι00 −

1

n

∑
j>0

ι0j .

Therefore,

− 1

T − T0

∑
t>T0

1

n

∑
j>0

E
[
Y 0
jt

∣∣∣T0

]
− 1

T0

T0∑
s=1

{
E
[
Y 0

0s|T0

]
− 1

n

∑
j>0

E
[
Y 0
js

∣∣∣T0

]}
= − 1

T − T0

∑
t>T0

κ0
t − ι00

which completes the proof of Lemma 4.2.

B Theorem 3.1

B.1 Definitions

Definition B.1. (β-mixing)Let Y be a stochastic process and (Ω,F , Y∞) be the probability space. The

β-mixing coefficient βY (h) is given by

βY (h) = sup
t
||P−∞:t ⊗ P(t+h):∞ − P−∞:tP(t+h):∞||TV

where ||.||TV is the total variation norm, P−∞:t ⊗ P(t+h):∞ is the joint distribution and P−∞:tP(t+h):∞ is

the product measure. The process is β-mixing if βY (h)→ 0 as h→∞

In this section we provide a set of definitions before discussing the main theorem. For a set A we

denote the space of bounded functions on A by

l∞(A,B) = {f : A→ B, such that ‖f‖∞ <∞},

where ‖f‖∞ = supa∈A |f(a)|. We let C[0, 1] to be the space of cad-lag functions, i.e. right-continuous with
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left-hand limits equipped with Skorokhod metric. We define the parameter of interest as a function of

the joint law of the data. More precisely, for any law P, for some parameter of interest θ, we can define

P 7→ θ(P) to be a measurable map from a domain C[0, 1] to Θ. For a metric space A with norm ||.||A we

denote the set of Lipschitz functionals whose level and Lipschitz constant are bounded by one by

BL1(A) = {f : A→ R : |f(a)| ≤ 1 and |f(a)− f(a′)| ≤ ||a− a′||A for all a, a′ ∈ A}.

The definition above helps us discussing the definition of weak convergence, provided below.

Definition B.2. (Weak Convergence) We say that Xn converges weakly in probability conditional on the

data to X, or Xn  X if

sup
f∈BL1

∣∣∣E[f(Xn)]− E[f(X)]
∣∣∣→ 0.

Consider the generic problem of studying the limiting distribution of

rn(φ(Xn)− φ(X))

for some φ : Dφ ⊂ D → E. The asymptotic distribution of interest can be derived whenever φ satisfies

some differentiability requirements such that

rn{φ(Xn)− φ(X)} = φ′θ0(rn(Xn − X)) + oP(1).

The main condition on φ is that is it satisfies a notion of differentiability denoted as Hadamard differen-

tiability. The definition is provided below.

Definition B.3. (Hadamard Differentiable Map) Let D and E be Banach spaces with norms ||.||D and

||.||E respectively, and φ : Dφ ⊆ D→ E. The map φ, is Hadamard differentiable at θ ∈ Dφ tangentially to

a set D0 ⊂ D if there exist a continuous linear map φ′θ : D0 → E such that

lim
n→∞

∥∥∥∥φ(θ + tnkn)− φ(θ)

tn
− φ′θ(k)

∥∥∥∥
E

= 0,

∀ converging sequences tn → 0, {tn} ⊂ R and kn ∈ D, kn → k ∈ D0 as n→∞ and θ + tnkn ∈ Dφ for all

n ≥ 1 sufficiently large.

It can be shown that Hadamard differentiability is equivalent to the difference in the previous expression
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in tending to zero uniformly on k in compact subsets of D (Van der Vaart, 2000). We move to define the

parameters of interest as functionals that map a space of bounded functions to a Banach space. We do

this in the following definition.

Definition B.4. Let the weights be w(·) : A ⊂ l∞(Rp,R)→W, where W = [0, 1]p.

As a second step we need to define the tests as a function of the parameter of interest and of a vector

z ∈ Rp+1.

Definition B.5. We define S0(z, w) ∈ l∞(Rp+1 ×W,R) where z ∈ Rp+1 and w ∈ W, with S0(z, w) =

|z1 − z2w|2 where z1 is the first entry of z and z2 all the remaining entries.

With an abuse of notation, we define

Zt = (Y o
0t, g(Xt)),

the vector of observations after imposing the null hypothesis and of transformations of the learners, and

refer to Yt as Y0t throughout our discussion. We will consider g(·) to be a fixed function independent of

Zt for the moment (hence Zt stationary under Assumption 1), and return to g(·) being estimated with

past data at the end of the proof (Appendix B.3).

We denote the empirical measures for control and treatment period, respectively,

PT0 =
1

T0

T0∑
t=1

δZt , PT1 =
1

T − T0

∑
t>T0

δZt , PT =
1

T

T∑
t=1

δZt .

Similarly P∗T ,P∗T0 denote the bootstrapped counterparts constructed based on the entire sample PT .

For z ∈ Rp+1 let the operator ≤ be the component wise operator. We now let F be the function class:

F = {fs : s ∈ Rp+1, fs(z) = 1z≤s}.

It follows that the empirical distribution function for the control and treatment period can be expressed

point wise as

FT0(s) = PT0fs, FT1(s) = PT1fs

respectively and similarly this hold for bootstrap measures. Notice that we can see FT0(·) and FT1(·) as

elements of l∞(Ω×F ,R) and similarly F ∗T0 , F ∗T as element of l∞(Ω× Ω̄×F ,R) where Ω̄ is the probability

space associated with bootstrap weights. For a fixed sample path we can view this mappings as belonging
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to l∞(F ,R). We define

HT (fs) =
√
T0

 PT0fs − Pfs
PT1fs − Pfs

 , H∗T (fs) =
√
T0

 P∗T0fs − PT fs
P∗T1fs − PT fs

 . (B.1)

Here P denotes the distribution of (Y o
t , g(Xt)) for fixed g(·) (i.e., the distribution induced by applying

a function [i(·), g(·)] to the vector (Y o
t , Xt), with g(·) evaluated at T− independent data points from

(Y o
t , Xt)

T
t=1, and conditional on such data points, and i(·) being the identity function).

We express the test statistics of interest as functionals of HT and a fixed null trajectory {aot}. That

is, for Equation (7) (divided by (T0 − T )1/2) we can define (A,B)→ T (A,B) with

T (A,B) =

∫
S0(z, w(A))dB.

B.2 Auxiliary Lemmas

Lemma B.1 (Functional Delta Method, Van Der Vaart and Wellner (1996) Theorem 3.9.4). Let D and E

be metrizable topological vector spaces. Let φ : Dφ ⊂ D 7→ E be Hadamard-differentiable at θ tangentially

to D0. Let Xn : Ωn 7→ Dφ be maps with rn(Xn − θ)  X for some sequence of constants rn → ∞,

where X is separable and takes its values in D0. Then rn(φ(Xn) − φ(θ))  φ′θ(X). If φ′θ is defined and

continuous on the whole of D, then the sequence rn(φ(Xn)− φ(θ))− φ′θ(rn(Xn − θ)) converges to zero in

outer probability.

We will use the above lemma and modifications of the arguments from the functional delta method for the

bootstrap (Theorem 3.9.11 in Van Der Vaart and Wellner, 1996), to derive the validity of the bootstrap

procedure.

Lemma B.2. (Lemma 3.8 in Lunde and Shalizi, 2017) Let Zt be a β-mixing (stationary) process with

mixing rate that decays at least at a cubic rate. Consider Ht defined in (B.1). Then

Ht  H = G×G

where H is a bivariate Gaussian process with × symbol denoting independence. Furthermore, is a mean
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zero Gaussian Process with covariance structure given by

Γ(f, g) = lim
k→∞

∞∑
i=1

{E[f(Zk)g(Zi)]− E[f(Zk)]E[g(Zi)]}, ∀f, g ∈ F . (B.2)

Lemma B.3. (Kosorok, 2008, Theorem 11.26) Let Y be a stationary sequence in Rd with marginal

distribution P and let F be a class of functions in L2(P ). Let G∗n(f) = Y ∗n f − Ynf . Also assume that

Y ∗1 , Y
∗

2 , . . . , Y
∗
n are generated by the circular block bootstrap procedure with b(n)→∞ as n→∞ and that

there exist a 2 < v <∞, q > v/(v − 2) and 0 < ρ < (v − 2)/[2v − 2] such that:

1. lim supk→∞ k
qβ(k) <∞;

2. F is permissible, VC and has envelope F satisfying PF v <∞;

3. lim supn→∞ n
−ρb(n) <∞.

Then G∗n  G ∈ l∞(F) where G is a mean 0 Gaussian Process with covariance structure Γ(f, g) =

limk→∞
∑∞

i=1{E[f(Yi)g(Yk)]− E[f(Yi)]E[g(Yk)]}, ∀f, g,∈ F .

Lemma B.4. (Lunde and Shalizi, 2017, Lemma A.3.3) Given a continuous function A and a function of

bounded variation B in the sense of Hardy-Krause in the hyper-rectangol R =
∏d
i=1[ai, bi] define

φ(A,B) =

∫
[a,b]

AdB.

Then, φ : C(R) × BVM (R) → R is Hadamard differentiable at each (A,B) ∈ Dφ such that
∫
|dA| < ∞.

The derivative is given by

φ′A,B(a, β) =

∫
[a,b]

Adβ +

∫
[a,b]

adB.

Lemma B.5. Consider two multivariate processes {Xt, Yt} and {f(Xt), Yt} for some measurable function

f . Let β1(h) and β2(h) be respectively the beta-mixing coefficient of {Xt, Yt} and {f(Xt), Yt}. Then

β2(h) ≤ β1(h).

Proof of Lemma B.5. For two random variables (X,Y ) and a measurable function f , σ(f(X)) ⊆ σ(X),

since the pullback f ◦ X(A)−1 = X−1(f−1(A)) ∈ σ(X) by measurability of f for a given event A.

Henceforth for any t,

σ((f(Xt), Yt)) ⊆ σ((Xt, Yt)).
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This implies that

sup
A∈σ((f(Xt),Yt)),B∈σ((f(Xt+h),Yt+h))

∑
i

∑
j

|P (Ai ∩Bj)− P (Ai)P (Bj)|

≤ sup
A∈σ((Xt,Yt)),B∈σ((Xt+h,Yt+h)

∑
i

∑
j

|P (Ai ∩Bj)− P (Ai)P (Bj)|.

where the supremum is over all paris of finite partitions {Ai}, {Bj} such that Ai ∈ A and Bj ∈ B where

A and B are the sigma algebras generated by the random variables of interest. Henceforth, exploting the

definition of β-mixing given in Bradley et al. (2005) we have

β2(h) = sup
t

sup
A∈σ((f(Xt),Yt)),B∈σ((f(Xt+h),Yt+h))

∑
i

∑
j

|P (Ai ∩Bj)− P (Ai)P (Bj)|

≤ sup
t

sup
A∈σ((Xt,Yt)),B∈σ((Xt+h,Yt+h)

∑
i

∑
j

|P (Ai ∩Bj)− P (Ai)P (Bj)| = β1(h).

Lemma B.6. (Lunde and Shalizi, 2017, Lemma 3.7) Let Q and R be probability distributions on (Ωj ,Aj)

where j is allowed to be ∞. Define the space of histories (Ht,Ht) , where Ht = Ωt and Ht = At and let

ht ∈ Ht be an history. Suppose Q, R permit regular conditional probabilities, denoted Q(·|ht), and R(·|ht),

respectively. Then, for || · ||TV denoting the total variation distance,

||Q−R||TV < ab⇒ Q(||Q(·|ht)−R(·|ht)||TV > a) < b.

B.3 Proof of Theorem 3.1

Recall that the theorem is derived under the null hypothesis H0. Consider the case where g(·) are fixed

functions. We then return to the case where these are estimated based on F− (the hold-out sample) at

the end of the proof. We first prove that H∗T and HT which we define as the empirical and bootstrapped

measures as in (B.1), converge to the same process H. We let 2T0 = T for notational convenience, but the

results directly hold as T0 ∝ T after rescaling by an appropriate constant.1 By Lemma B.5 beta-mixing

conditions on (Y o
t , Xt) imply the same conditions on the beta-mixing coefficients of (Y o

t , g(Xt)). Similarly,

stationarity of (Y o
t , Xt) also implies stationarity of (Y o

t , g(Xt)).

1In that case, we would also rescale appropriately each component on HT by its corresponding constant term.
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To apply the functional delta method we first need to show that H∗T and HT converge to the same

process up to a multiplicative constant. By Lemma B.2 HT →d H. Therefore, by Lemma B.1, we have

that for an Hadamard differentiable map as defined in Lemma B.1,

√
T0

(
φ([PT0 ,PT1 ])− φ([P,P])

)
→d φ

′
P(H).

By Lemma B.3, P∗T0−PT and P∗T −PT (appropriately rescaled) converge marginally to a Gaussian Process

with covariance matrix described in Lemma B.3.2 Since P∗T0 ,P
∗
T are drawn independently conditional on

PT , we can conclude that H∗T →d H conditionally on PT .

We now follow the proof of Theorem 3.9.11 in Van Der Vaart and Wellner (1996) with some minor modi-

fications given the presence of (PT0 ,PT1) to show consistency of the bootstrap for a genering Hadamard

differentiable functional φ as defined in Lemma B.1. Define P∗T = [P∗T0 ,P
∗
T1

]. Note that H∗T =
√
T0(P∗T −

[PT ,PT ]). Let PT = [PT ,PT ]. Note that by Theorem 11.25 in Kosorok (2008),
√

2T0(PT − P) →d G

where G is as defined in Lemma B.2. Since HT →d H, by Lemma B.1,

sup
h∈BL1(E)

∣∣∣Eh(√T0(φ(P∗T )− φ(PT )
)
− Eh

(√
T0(φ([PT0 ,PT1 ])− φ([P,P])

)∣∣∣
≤ sup

h∈BL1(E)

∣∣∣Eh(√T0(φ(P∗T )− φ(PT )
)
− Eh(φ′P(H))

∣∣∣︸ ︷︷ ︸
(i)

+o(1).

We want to show that (i) converges to zero.

Following Van Der Vaart and Wellner (1996) (Page 380), without loss of generality, we can assume

that φ′P : D 7→ E is defined and continuous on the whole space. For every h ∈ BL1(E), the function h ◦φ′P
is contained in BL||φ′P ||(D). Therefore, since H∗T →d H, we can write

sup
h∈BL1(E)

∣∣∣Eh(φ′P(H∗T ))− Eh(φ′P(H))
∣∣∣ = o(1).

2Conditions in Lemma B.3 are justified for the following reasons. As discussed in Section 9.1.1, Kosorok (2008) the class F
has bounded VC dimension. In addition, the class is also permissible since it satisfies the two requirements of permissibility:
we can index the class by a set T = Rp that is a valid Polish space equipped with Borel sigma field.
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Next,

sup
h∈BL1(E)

∣∣∣Eh(√T0(φ(P∗T )− φ(PT )
)
− Eh(φ′P (H∗T ))

∣∣∣ = sup
h∈BL1(E)

∣∣∣Eh(√T0(φ(P∗T )− φ(PT )
)
− Eh(φ′P (

√
T0(P∗T − PT )))

∣∣∣
≤ ε+ 2P

(∣∣∣∣∣∣√T0(φ(P∗T )− φ(PT )
)
− φ′P (

√
T0(P∗T − PT )))

∣∣∣∣∣∣ > ε
)
,

since we took without loss of generality the supremum over a ball with radius one. Notice now that
√
T0(P∗T − [P,P]) and

√
T0(PT − [P,P]) they both converge (unconditionally) in distribution to a separable

random element that concentrate on D0. The first case follows since H∗T converges in distribution to H

and
√

2T0(PT − P) converges in distribution to G. The second case follows directly from the fact that
√

2T0(PT − P) converges in distribution to G. Using the functional delta method, we can write

√
T0(φ(P∗T )− φ(P,P)) = φ′P(

√
T0(P∗T − (P,P))) + op(1),

√
T0(φ(PT )− φ(P,P)) = φ′P(

√
T0(PT − (P,P))) + op(1).

Subctracting the two equations, we obtain the desired result.

We now want to show Hadamard differentiability. We now show Hadamard differentiability for T (·, ·)

for S0(z, w) = |z(−1, w)|2, with T (·, ·) being the test statistic of interest. The proof invokes the chain rule

for Hadamard differentiable maps (Van der Vaart, 2000). We can see T (·, ·) as the composition of maps

T : (A,B)
(a)→ (B,w(A))

(b)→ (B,S0(z, w(A)))
(c)→
∫
S0(z, w(A))dB.

The map (c) is Hadamard differentiable by Lemma B.4. We have to show that S0(z, w) is itself Hadamard

differentiable in w at w(P) that we write as w̄ for short. We start by proving Hadamard differentiability

of

S0(z, w) = [z′(−1, w)]2.

We omit the S0 notation for sake of simplicity in the next few lines. To show Hadamard differentiability

we need to show that ∥∥∥∥S(., w̄ + tnhn)− S(., w̄)

tn
− S′w̄(., h)

∥∥∥∥
∞
→ 0 (B.3)

where

S′w̄((z1, z2), h) = 2(z1 − z2w̄)h′z2.

We can rewrite the LHS above as

||2(z1 − z′2w̄)z′2(hn − h)||∞ + |tn|||(z′2hn)2||∞. (B.4)
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For the first term in (B.4) by the assumption of compact support, there must exist c <∞ such that

sup
z1,z2
|2(z1 − z′2w̄)z′2(hn − h)| < c||hn − h||1

and since ||hn − h|| → 0 the term goes to zero. Equivalently for the second term, since (z′2hn)2 < ∞ by

the compactness assumption, and tn → 0 also the second term converges to zero. We are left to show that

A 7→ w(A) is Hadamard differentiable, for w. This directly follows by assumption.

Finally, consider the case where g(·) are estimated using information from F− (i.e., using the hold-out

sample indexed by t < 0), where T− is kept fixed with T (recall the definition of P at the end of Appendix

B.1). To invoke the functional delta method in this case, we need to show that the asymptotic statement in

Lemma B.2 holds conditionally on the initial sample (ZT− , · · · , Z0), letting T →∞. Using the definition

of weak convergence, we need to show that

sup
h∈BL1

∣∣∣E[h(√T0[PT0 − P,PT1 − P]
)∣∣∣ZT− , · · · , Z0

]
− E[h(cH)]

∣∣∣→ 0,

up to a rescaling constant c. To show the claim, we exploit the β-mixing conditions. First, we observe

that we can write

√
T0[PT0 − P,PT1 − P] =

√
T0

[ 1

T0

m∑
t=1

δZt −
m

T0
P︸ ︷︷ ︸

(A)

+
1

T0

∑
T0≥t>m

δZt − (1− m

T0
)P︸ ︷︷ ︸

:=Pm,T0

,PT1 − P
]
,

for any m. We take m → ∞ and m/
√
T0 → 0, which implies (A) = o(1) almost surely. Since (A) = o(1)

we can write

sup
h∈BL1

∣∣∣E[h(√T0[PT0 − P,PT1 − P]
)∣∣∣ZT− , · · · , Z0

]
− E[h(H)]

∣∣∣
= sup

h∈BL1

∣∣∣E[h(√T0[Pm,T0 ,PT1 − P]
)∣∣∣ZT− , · · · , Z0

]
− E[h(H)]

∣∣∣+ ε+ 2P
(
||
√
T0(A)|| > ε|ZT− , · · · , Z0

)
= sup

h∈BL1

∣∣∣E[h(√T0[Pm,T0 ,PT1 − P]
)∣∣∣ZT− , · · · , Z0

]
− E[h(H)]

∣∣∣+ o(1),

for a suitable choice of ε = o(1). Also, note that
√
T0[Pm,T0 ,PT1 − P] satisfies the mixing conditions in

Lemma B.2.
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Define µm a sequence of probability distributions of (ZT− , · · · , Z0, Zm, · · · ), and µ∞ the product mea-

sure of (ZT− , · · · , Z0) and (Zm, · · · ). Then under the assumed mixed conditions, by Lemma B.6

∞∑
m=1

P (||µm(·|h0)− µ∞(·|h0)||TV > am) <∞,

for am → 0, which implies ||µm(·|h0) − µ∞(·|h0)||TV → ∞ by the Borel-Cantelli Lemma. This implies

that for any bounded function f

∫
fdµm(·|h0)→

∫
fdµ∞(·|h0).

Hence, we can write

sup
h∈BL1

∣∣∣E[h(√T0[Pm,T0 ,PT1−P]
)∣∣∣ZT− , · · · , Z0

]
−E[h(H)]

∣∣∣ = sup
h∈BL1

∣∣∣ ∫ h
(√

T0[Pm,T0 ,PT1−P]
)
dµ∞−E[h(H)]

∣∣∣+o(1).

The same reasoning applies to the bootstrapped process H∗T . Since µ∞ is the product measure of

(ZT− , · · · , Z0) and (Zm, · · · ) the rest of the proof follows directly from the unconditional case discussed

at the beginning of the proof.

B.4 Proof of Theorem 4.1

Note that under Assumption 2 we can fix T0 as non-random (condition on T0) without affecting the

distribution of observables and unobservables. To prove the claim we can write the estimator as follows

τ̂ =
1

T − T0

∑
t>T0

Yt −
1

T0/2

T0∑
t=T0/2+1

Yt︸ ︷︷ ︸
(A)

+

T0∑
t=T0/2+1

w(F0,−1/2)g(Xt)−
T0∑
t>T0

w(F0)g(Xt)︸ ︷︷ ︸
(B)

.

Consider first (A). By beta-mixing (and hence alpha-mixing), by the Ergodic Theorem3

(A)− τ →p 0.

We are left to show that (B) converges to zero. We define F̃1 the empirical distribution of Xt for

t > T0 and F̃0,1/2 the empirical distribution of Xt for T0 ≥ t > T0/2 + 1. Note that by Assumption

3See Theorem 3.34 in White (2014).
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2 and stationarity (Assumption 1), we obtain E[F̃1] = E[F̃0,1/2] = PX with PX denoting the marginal

distribution of Xt. Here, PX is time-invariant by Assumption 1 and the fact that we subctract the fixed

effects components. We also define P = E[F0] denoting the distribution of (Xt, Yt) (time invariant by

Assumption 1). Finally, recall the definition of F− denoting the empirical distribution over the sample

t < 0.

We now write, in compact form, with a change of notation, and making explicit the dependence of

g(Xt, F−) with F−,

(B) =

∫
w(F0,−1/2)g(Xt;F−)dF̃0,1/2 −

∫
w(F0)g(Xt;F−)dF̃1.

We now discuss each component after conditioning on F−. In particular, we note that we can interpret

each component as map

T (A,B;F−) =

∫
w(A)g(x, F−)dB,

which is Hadamard differentiable in A and B by Lemma B.4 (but not necessarily in F−). Following the

argument of the proof of Theorem 3.1 verbatim and invoking Lemma B.2 and beta-mixing as in the proof

of Theorem 3.1 (see Appendix B.3), we obtain

√
T0(T (F0,−1/2, F̃0,1/2;F−)− T (P,PX ;F−))→d T

′
P,PX (Y;F−),√

T0(T (F0, F̃1;F−)− T (P,PX ;F−))→d T
′
P,PX (Ỹ;F−)

for two tight processes (Y, Ỹ). This implies that T (F0,−1/2, F̃0,1/2;P), T (F0, F̃1) converges in probability

to the same asymptotic limit. This implies that

∫
w(F0,−1/2)g(Xt;F−)dF̃0,1/2 −

∫
w(F0)g(Xt;F−)dF̃1 = oP (1),

completing the proof.

B.5 Additional Results

It is interesting to study Hadamard differentiability of the weights. Hadamard differentiability for Least

Squares has been shown in other papers, such as in Lunde and Shalizi (2017). Hence, we only need to

show Hadamard differentiability for exponential weights.
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Theorem B.7. Consider exponential weights as in Equation (11) with η ∝ 1/T0, and (Yt, g(Xt)) uniformly

bounded. Then such weights are Hadamard differentiable.

Proof of Theorem B.7. Since we consider a finite dimensional parameter space, we can prove Hadamard

differentiability by showing Hadamard differentiability for each coordinate. We will assume that

ηt =
η

t
.

We let l : R2 → R+ the loss function and we assume the loss can be at most C < ∞ and η > 0(which

follows for quadratic loss functions and bounded random variables). The aim is to show that

ŵ
(i)
0 (F ) =

exp(−η
∫
l(z1, zi)dF )∑p+1

j=2 exp(−η
∫
l(z1, zj)dF )

(B.5)

is Hadamard differentiable with Z = (z1, . . . , zp+1) ∈ [−M,M ]p+1. We will use the chain rule for the

Hadamard derivative. We can see w(i)(F ) is the composition of mappings:

A
(a)7→


∫
l(z1, z2)dA

. . .∫
l(z1, zp+1)dA


(b)7→


exp(−η

∫
l(z1, z2)dA)

. . .

exp(−η
∫
l(z1, zp+1)dA)


(c)7→

 exp(−η
∫
l(z1, zi)dA)∑p

j=1 exp(−η
∫
l(z1, zj+1)dA)


(d)7→

exp(−η
∫
l(z1, zi)dA)∑p

j=1 exp(−η
∫
l(z1, zj+1)dA)

.

We will prove that each map is Hadamard differentiable under the conditions stated component wise. We

start by proving that (a) is Hadamard differentiable component wise. For ||hn − h||∞ → 0, tn → 0

∫
l(z1, zj)d(F + tnhn)−

∫
l(z1, zj)dF

tn
=
tn
∫
l(z1, zj)dhn
tn

+

∫
l(z1, zj)d(F − F )

tn

→
∫
l(z1, zj)dh.
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Since l(z1, zj) is bounded, uniform convergence follows. Hence

∥∥∥∥∫ l(z1, zj)d(F + tnhn)−
∫
l(z1, zj)dF

tn
−
∫
l(z1, zj)dh

∥∥∥∥
∞
→ 0.

We now move to (b). Let x be the argument of the map. Recall that the argument is positive. Using the

mean value theorem, for h̄n ∈ [hn, h],

exp(−η(x+ tnhn))− exp(−η(x))

tn
=

exp(−ηx)[exp(−ηtnhn)− 1]

tn

=
exp(−ηx)[−ηtn exp(−ηtnh̄n)hn]

tn

= −η exp(−ηx− ηtnh̄n)hn → −η exp(−ηx)h.

(B.6)

Hence we have

∥∥∥∥exp(−η(x+ tnhn))− exp(−η(x))

tn
+ η exp(−ηx)h

∥∥∥∥
∞

= sup
x∈R+

| exp(−ηx)[
exp(−ηtnhn)− 1

tn
+ ηh]|

≤ |exp(−ηtnhn)− 1

tn
+ ηh| = | − η exp(−ηtnh̄n)hn + ηh| → 0

since exp(−ηx) ≤ 1 for x ≥ 0. Since ηh exp(−ηx) is linear in h, (b) is Hadamard differentiable. The map

(c) is Hadamard differentiable by linearity of the Hadamard derivative. We are left to prove (d). Let

tn → 0,

∥∥∥∥∥∥hn −
(
h1

h2

)∥∥∥∥∥∥
∞

→ 0.

Take N such that pe−ηC > |tNhN,2|. Such N exists since tn → 0 and hn,2 → h2 < ∞. For n > N we
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have ∥∥∥∥∥∥
x+tnhn,1
y+tnhn,2

− x
y

tn
− h1

y
+ h2

x

y2

∥∥∥∥∥∥
∞

= sup
0≤x≤1,y≥re−ηC

∥∥∥∥(hn,1 − h1)− (hn,2 − h2)x/y − h1tnhn,2/y + h2xhn,2tn/y
2

y + tnhn,2

∥∥∥∥
∞

≤ sup
0≤x≤1,y≥re−ηC

|hn,1 − h1|
|y + tnhn,2|

+
|hn,2 − h2||xy |
|y + tnhn,2|

+ |tn|
|h1hn,2|/|y|
|y + tnhn,2|

+
|h2hn,2x/y

2|
|y + tnhn,2|

|tn|

≤ |hn,1 − h1|
pe−ηC − |tnhn,2|

+
|hn,2 − h2|

pe−ηC(pe−ηC − |tnhn,2|)
+ |tn|

|h1hn,2|
pe−ηC(pe−ηC − |tnhn,2|)

+
|h2hn,2|

pe−2ηC(pe−ηC − |tnhn,2|)
|tn|

→ 0.

(B.7)

since each term is going to zero and the denominator of each term is bounded away from zero. Hence the

Hadamard derivative is −h1
y + h2

x
y2

, which is linear in h.

We discuss the implication of our results for the asymptotic distribution of the test statistic in the

following theorem.

Theorem B.8. Under the conditions in Theorem 3.1 the test statistics T (A,B), are Hadamard differen-

tiable tangentially at (P0,P0) with derivative T ′S,P0,P0
. Therefore,

TS(PT0 ,PT )− TS(P0,P0)→d T ′S,P0,P0
(H)

where P0,H are as defined respectively as the true CDF of (Y 0
t , Xt) and as defined in Lemma B.2.

The proof follows directly from the differentiability properties discussed in the derivation of Theorem

3.1, and by the Functional Delta Method. Observe that the asymptotic distribution depends on the

Hadamard derivative of the test statistics which ultimately depends on the weighting mechanism. Its

expression is obtained through the chain rule in the proof of Theorem 3.1 .

C Proofs of the Results in Section 5

With an abuse of notation we define the prediction of the potential outcome at time t as

Ŷ 0
t (Ft−1) := m̂t(Xt, w

t−1)
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where wt−1 are exponential weights as in (11) computed using information available only until time t− 1.

Lemma C.1. Consider the Synthetic Learner with the exponential weighting scheme with ĝi : X →

[−M
2 ,

M
2 ]. Then

1

T0

T0∑
t=1

(Yt − m̂t(Xt, w
t−1))2 − min

i∈{1,...,p}

1

T0

T0∑
t=1

(Yt − ĝi(Xt))
2 ≤ log(p)/η +

T0∑
t=1

C2
t η/8 (C.1)

where Ct = Y 2
t +M2.

Proof of Lemma C.1 . The proof follows similarly to Cesa-Bianchi et al. (1999) with appropriate modifi-

cations for the context under consideration. Let

wi,t =

p∑
i=1

exp(−η
t∑

s=1

l(Ys, ĝi(Xs))), Wt =

p∑
i=1

wi,t.

We denote ĝi(Xt) := ĝi,t for expositional convenience. We recall that the weights in the first period are

uniform across the learners.

We start by deriving a lower bound:

log(WT0/w) = log(WT0)− log(p) = log
( p∑
i=1

exp(−η
T0∑
t=1

(Yt − ĝi,t)2)
)
− log(p)

≥ log( max
i∈{1,...,p}

exp(−η
T0∑
t=1

(Yt − ĝi,t)2)− log(p)

= −ηmini∈{1,...,p}

T∑
t=1

(Yt − ĝi,t)2 − log(p).

Next, we derive an upper bound on the same quantity of interest.

log(WT0/w) = log(

T0∏
t=1

Wt/Wt−1) =

T0∑
t=1

log
( p∑
i=1

wi,t−1

Wt−1
exp(−η(Yt − ĝi,t)2)

)
=

T0∑
t=1

log
(
Eĝ∼Qt [exp(−η(Yt − ĝi,t)2)]

)

where Eĝ∼Qt denotes the expectation conditional on the data taken with respect to a distribution Qt on

base-learners which assigns a probability proportional to exp(−η
∑t−1

s=1(Yt− ĝi,s)2) to each base algorithm.
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Recalling Hoeffding bound on the moment generating function of a bounded random variable we observe

that

log(Eĝ∼Qt [exp(−η(Yt − ĝi,t)2)]) ≤ −ηEĝ∼Qt [(Yt − ĝi,t)2] +
η2C2

t

8

≤ −η(Yt − Eĝ∼Qt [ĝi,t])
2 +

η2C2
t

8

= −η(Yt −
p∑
i=1

wi,t
Wt

ĝi,t)
2 +

η2C2
t

8

= −η(Yt − m̂t(Xt))
2 +

η2C2
t

8

where Ct = Y 2
t +M2. Hence we have

− ηmini∈{1,...,p}

T∑
t=1

(Yt − m̂t(Xt, w
t−1))2 − log(p) (C.2)

≤ log(WT0/w) ≤
T0∑
t=1

−η(Yt −
p∑
i=1

wi,t
Wt

ĝi,t)
2 +

T0∑
t=1

η2C2
t

8
. (C.3)

Rearranging terms we get

T0∑
t=1

(Yt − m̂t(Xt, w
t−1))2 − min

i∈{1,...,p}

T0∑
t=1

(Yt − ĝi,t)2 ≤ log(p)

η
+

T0∑
t=1

C2
t η

8
. (C.4)

Corollary 1 (Theorem 5.1). Suppose that Yt ≤ M < ∞ almost surely. Consider η =
√

8 log(p)
M2T0

and the

above conditions hold. Then we obtain that

1

T0

T0∑
t=1

(Yt − m̂t(Xt, w
t−1))2 − min

i∈{1,...,p}

1

T0

T0∑
t=1

(Yt − ĝi,t)2 ≤ C

√
log(p)

T0
. (C.5)

for a constant C <∞. Therefore, Theorem 5.1 holds.

C.1 Proof of Theorem 5.2

We now discuss the main proof of the theorem.

We let wt−1 denote the exponential weights computed using information only from time 1 up to time

t− 1 for estimating Ŷ 0
t .
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We start by decomposing the average loss as follows.

1

T0

T0∑
t=1

(Yt − m̂t(Xt, w
t−1))2 =

1

T0

T0∑
t=1

(m̂t(Xt, w
t−1)− µt(Xt))

2 + ε20t + 2(m̂t(Xt, w
t−1)− µt(Xt))ε0t

1

T0

T0∑
t=1

(Yt − ĝi(Xt))
2 =

1

T0

T0∑
t=1

(ĝi(Xt)− µt(Xt))
2 + ε20t + 2(ĝi(Xt)− µt(Xt))ε0t

. (C.6)

Let ĝi,t = ĝi(Xt). Note that

1

T0

{ T0∑
t=1

(Yt − m̂t(Xt, w
t−1))2 −mini∈{1,...,p}

T0∑
t=1

(ĝi,t − Yt)2
}

=
1

T0

T0∑
t=1

(µt(Xt)− m̂t(Xt, w
t−1))2 + 2mini∈{1,...,p}

1

T0

T0∑
t=1

(m̂t(Xt, w
t−1)− ĝi(Xt))ε0t −

1

T0

T0∑
t=1

(ĝi,t − µt(Xt))
2.

(C.7)

Next, we provide a bound on the cumulative one step ahead prediction error.

Using Lemma C.1 and the decomposition in (C.7), for a finite constant C independent of p, T0, we

write

1

T0
{
T0∑
t=1

(µt(Xt)− m̂t(Xt, w
t−1))2

≤ mini∈{1,...,p}
1

T0

T0∑
t=1

{(ĝi,t − m̂t(Xt, w
t−1))ε0t + (ĝi,t − µt(Xt))

2}+ C

√
log(p)

T0

≤ max
j∈{1,...,p}

1

T0

T0∑
t=1

(ĝj,t − m̂t(Xt, w
t−1))ε0t︸ ︷︷ ︸

(I)

+ mini∈{1,...,p}
1

T0

T0∑
t=1

(ĝi,t − µt(Xt))
2 + C

√
log(p)

T0︸ ︷︷ ︸
(II)

.

(C.8)

We discuss the term (I). Define

Vt = εt(m̂t(Xt, w
t−1)− ĝi(Xt))− E[εt(m̂t(Xt, w

t−1)− ĝi(Xt))|Ft−1].

We have

(I) = max
i∈{1,...,p}

1

T0

T0∑
t=1

[
Vt + E[εt(m̂t(Xt, w

t−1)− ĝi(Xt))|Ft−1]
]
.
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Using the triangular inequality, we have

|(I)| ≤ max
i∈{1,··· ,p}

∣∣∣ 1

T0

T0∑
t=1

εt(m̂t(Xt, w
t−1)− ĝi(Xt))− E

[
εt(m̂t(Xt, w

t−1)− ĝi(Xt))
∣∣∣Ft−1

]∣∣∣
+
∣∣∣ 1

T0

T0∑
t=1

E
[
εt(m̂t(Xt, w

t−1)− ĝi(Xt))
∣∣∣Ft−1

]∣∣∣. (C.9)

Observe that Vt is a martingale difference sequence. As a result, we can use Azuma inequality

(Boucheron et al., 2013), and the union bound over p, and obtain with probability at least 1− δ,

max
i∈{1,··· ,p}

∣∣∣ 1

T0

T0∑
t=1

εt(m̂t(Xt, w
t−1)− ĝi(Xt))− E

[
εt(m̂t(Xt, w

t−1)− ĝi(Xt))
∣∣∣Ft−1

]∣∣∣ ≤ C0

√
log(p/δ)

T0
,

where C0 is a finite constant independent of T0, p. Since E
[
εt(m̂t(Xt, w

t−1)− ĝi(Xt))
∣∣∣Ft−1

]
= 0, we have

with probability at least 1− δ,

|(I)| ≤ C0

√
log(p/δ)

T0
,

for a constant C0 <∞.

D Examples

D.1 Failure of Stationarity with Spillovers

Although our results remain correct in the presence of carry-over effects we do not expect them to hold

for the case of spillover over covariates. Observe that spillovers effects on Xt violate stationarity of Xt

and hence the validity of Theorem 3.1.

We provide a counterexample where the bootstrap is likely to fail under such circumstances. We

consider a case in which covariates are a function of the treatment assignment indicator - i.e., there are

spillovers from Yt to Xt while keeping m = 0. A factor model, Yt = atDt + Ft + N (0, σ2) and 10-

covariates that possibly depend on the treatment groups d, Xj,t(d) = Ft +N (0, 1 + d) are considered with

Ft ∼ N (0, 1). Moreover, at = 0. The best estimator then is a simple average Ŷ 0
t = X̄t where X̄t is the

sample average of Xt,j ’s. Then, TS = τ1χ
2
T−T0 for τ1 = (σ2 + 2J−1)/

√
T − T0, while T ∗S = τ2χ

2
T−T0 with

τ2 = (σ2 + J−1)/
√
T − T0. Figure D.1 illustrates over-rejection of the nulls whenever the spillover effects

are strong (right panel). For larger values of σ2, spillover effects become negligible and the density of the
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Figure D.1: Explanatory example on failure of the bootstrap in the presence of spillover effects on Xt.
Blue histogram indicates TS = τ1χ

2(T − T0) whereas the red corresponds to its bootstrapped counterpart
T ∗S = τ2χ

2(T − T0) where τ1 = (σ2 + 2J−1)/
√
T − T0, τ2 = (σ2 + J−1)/

√
T − T0. Large values of σ

correspond to diminishing effects of the spillovers in which case we see good approximation properties;
although in this case stationarity is still violated. For small values of σ we see clear departures of the two
distributions.

bootstrapped test statistic approximately agrees with the true density in this also, non-stationary case

(left panel).

E Additional Numerical Experiments

E.1 Results for Other DGPs

In this section we illustrate results for other DGPs considered. Results are robust across DGPs and

illustrate substantial improvements of the proposed methods. These can be observed in Figure E.1.

E.2 Varying T − T0

In this section we vary T − T0, i.e., the post treatment period, and show that results remain robust for

different choices of the post-treatment period, both longer and shorter than ten. This is illustrated in

Figure E.2, E.3. In the figures, we report the power for different values of T and T ∗ = T − T0.

21



Methods DID (Perm) Synthetic Control (Perm) Synthetic_Learner

0.00

0.25

0.50

0.75

1.00

0 1 2 3
alpha/sd_Y

Percent of rejections DGP4(a), T = 100, T_0 =90

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.5 1.0
alpha/sd_Y

Percent of rejections DGP4(b), T = 100, T_0 =90

0.00

0.25

0.50

0.75

1.00

0 2 4
alpha/sd_Y

Percent of rejections DGP5(a), T = 100, T_0 =90

0.00

0.25

0.50

0.75

1.00

0 1 2
alpha/sd_Y

Percent of rejections DGP5(b), T = 100, T_0 =90

Figure E.1: T = 100, p = 10 Percentage of rejections of the null hypothesis of no treatment effects over 300
repetitions. The x-axis reports the policy’s effect rescaled by the outcome’s standard deviation. Synthetic
learner has XGboost,Support Vector Regression and arima(0,1,1) and 50 additional non informative
predictions. The blue line denotes the proposed method; red line denotes the difference-in-differences and
green line denotes the Synthetic Control method.

E.3 Oracle Study: Known Critical Value

In order to better understand the drivers of the power performance, we study the case where the critical

value of the test is known to the researcher; we estimated it by Monte Carlo simulation since no closed-form

expression for its density is available. Figure E.4 collects our results. Synthetic Learner does not have

uninformative learners, and the class consists of XGboost, Support Vector Regression, and arima(0,1,1).

We take T = 300, T0 = 280, and we let T− = 140.

Since the critical quantile are assumed to be known, SC and DiD are estimated using information

until time T0 (Abadie et al., 2010), and not on the full sample as imposed by permutation methods. The

proposed method outperforms uniformly DiD, and SC in almost all DGPs considered.

Additional results on the oracle study are included in Figure E.5.

E.4 Endogenous Time of the Treatment

Additional results for the case of endogenous time of treatment are discussed in Figure E.6, which are

consistent with results in the main text.
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Figure E.2: T ∈ {60, 100}, T ∗ = 5, p = 10 Percentage of rejections of the null hypothesis of no treatment
effects over 300 repetitions. The x-axis reports the policy’s effect rescaled by the outcome’s standard
deviation. Synthetic learner has XGboost,Support Vector Regression and arima(0,1,1) and 50 additional
non informative predictions. The blue line denotes the proposed method; red line denotes the difference-
in-differences and green line denotes the Synthetic Control method.
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Figure E.3: T ∈ {60, 100}, T ∗ = 20, p = 10 Percentage of rejections of the null hypothesis of no treatment
effects over 300 repetitions. The x-axis reports the policy’s effect rescaled by the outcome’s standard
deviation. Synthetic learner has XGboost,Support Vector Regression and arima(0,1,1) and 50 additional
non informative predictions. The blue line denotes the proposed method; red line denotes the difference-
in-differences and green line denotes the Synthetic Control method.
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Figure E.4: Percentage of rejections over 500 repetitions with T = 300, T0 = 280, p = 50, and T− =
140 when the critical quantile is known(oracle case). The x-axis reports the policy’s effect rescaled by
the outcome’s standard deviation. SC and DiD are estimated using all information until time T0(no
permutation test required). SC-Learner1 is the Synthetic Learner trained with XGboost, Support Vector
Regression, arima(0,1,1) and 50 additional non informative predictions. SC-Learner2 is the Synthetic
Learner which also includes classical SC and it does not include non-informative predictions. The red line
corresponds to the DiD method; the yellow line corresponds to the SC method; the blue line is SC-Learner
1 method and the purple line in SC-Learner 2.
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Figure E.5: Percentage of rejections over 500 repetitions with T = 300, T0 = 280, p = 50 and T− =
140 when the critical quantile is known(oracle case). The x-axis reports the policy’s effect rescaled by
the outcome’s standard deviation. SC and DiD are estimated using all information until time T0(no
permutation test required). SC-Learner1 is the Synthetic Learner trained with XGboost, Support Vector
Regression, arima(0,1,1) and 50 additional non informative predictions. SC-Learner2 is the Synthetic
Learner which also includes classical SC and it does not include non-informative predictions. The red line
corresponds to the DiD method; the yellow line corresponds to the SC method; the blue line is SC-Learner
1 method and the purple line in SC-Learner 2.
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Figure E.6: Percentage of rejections over 500 repetitions with T = 400, T0 = 280, J = 50 and T− = 140
when the critical quantile is estimated via resampling and the time of treatment is endogenous..
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F Empirical Analysis: Additional Results

In Table F.1 we report results when all states with the exception of Oregon are considered, since Oregon

also implemented a Medicaid reform. Table F.2 F.3 collect results for different choices of the tuning

parameter η and show robustness of the results.

Table F.1: 90% and 80% critical values, t-statistic and ATT using all the states as controls. The effect
estimated is over the time window 2010-2014 (first row), and consecutive windows 2011-2014 (m = 1yr),
2012-2014 (m = 2yr), 2013-2014 (m = 3yr). Period 1 collects results when learners are estimated using
the window between 1998-2006 and weights are estimated over the period 1993-1997. Period 2 corresponds
to the opposite scenario. Demeaned SL denotes the SL with time-varying fixed effects.

Period 1 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.723 1.598 1.883 3.525 1.671 1.548 1.820 3.503
m = 1yr 1.664 1.525 1.830 3.754 1.583 1.455 1.754 3.701
m = 2yr 1.614 1.477 1.829 3.973 1.529 1.401 1.741 3.892
m = 3yr 1.535 1.389 1.776 4.098 1.450 1.313 1.679 3.991

Period 2 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.707 1.574 1.279 5.840 1.086 1.007 1.049 5.520
m = 1yr 1.642 1.514 1.221 6.040 1.027 0.948 0.990 5.708
m = 2yr 1.609 1.481 1.226 6.243 1.001 0.921 0.995 5.901
m = 3yr 1.555 1.420 1.194 6.351 0.964 0.883 0.972 6.001

In Figure F.1, we plot the observed outcome and the estimated counterfactual for the percentage of

individuals not having economic access to health-care.
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Table F.2: 90% and 80% critical values, t-statistic and ATT using the southern states as controls and
η = 1/(TVar(Yt)). The effect estimated is over the time window 2010-2014 (first row), and consecutive
windows 2011-2014 (m = 1yr), 2012-2014 (m = 2yr), 2013-2014 (m = 3yr). Period 1 collects results when
learners are estimated using the window between 1998-2006 and weights are estimated over the period
1993-1997. Period 2 corresponds to the opposite scenario. Demeaned SL denotes the SL with time-varying
fixed effects.

Period 1 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.321 1.237 1.328 1.786 0.901 0.844 0.834 0.969
m = 1yr 1.237 1.155 1.253 1.932 0.787 0.743 0.728 1.034
m = 2yr 1.200 1.114 1.244 2.096 0.751 0.706 0.695 1.077
m = 3yr 1.151 1.057 1.200 2.178 0.709 0.659 0.648 1.063

Period 2 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 0.713 0.665 0.321 3.280 0.521 0.473 0.246 3.137
m = 1yr 0.642 0.597 0.231 3.297 0.462 0.416 0.166 3.142
m = 2yr 0.631 0.586 0.220 3.365 0.453 0.408 0.157 3.204
m = 3yr 0.618 0.571 0.214 3.392 0.452 0.405 0.152 3.198

Table F.3: 90% and 80% critical values, t-statistic and ATT using the southern states as controls and
η = 1%. The effect estimated is over the time window 2010-2014 (first row), and consecutive windows
2011-2014 (m = 1yr), 2012-2014 (m = 2yr), 2013-2014 (m = 3yr). Period 1 collects results when learners
are estimated using the window between 1998-2006 and weights are estimated over the period 1993-1997.
Period 2 corresponds to the opposite scenario. Demeaned SL denotes the SL with time-varying fixed
effects.

Period 1 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.336 1.254 1.362 1.865 0.895 0.841 0.827 0.988
m = 1yr 1.256 1.170 1.292 2.023 0.792 0.744 0.720 1.054
m = 2yr 1.221 1.131 1.286 2.197 0.755 0.709 0.686 1.094
m = 3yr 1.155 1.062 1.245 2.289 0.713 0.659 0.641 1.082

Period 2 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.281 1.186 0.513 4.690 0.547 0.496 0.236 3.143
m = 1yr 1.219 1.127 0.441 4.805 0.486 0.437 0.157 3.161
m = 2yr 1.197 1.108 0.439 4.928 0.485 0.431 0.149 3.225
m = 3yr 1.164 1.074 0.427 4.970 0.480 0.427 0.144 3.211
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Figure F.1: Observed and predicted counterfactual of the percentage of childless adults who are not able to
afford health-care expenses with demeaned SL and southern states as controls. The red line is the observed
time series in Tennessee, and the blue line is the estimated counterfactual under no dis-enrollment. The
other lines are predictions of the counterfactual for each base-learner used. In the plot, the time series are
smoothed using a local polynomial.

G Additional Algorithms

Algorithm G.1 Synthetic Control Bootstrap

Require: Observations {Yt, Xt}Tt=T− , time of the treatment-T0, carryover effect size-m, tuning parameter
η > 0, learners f1, . . . , fp, null hypothesis values {aot}t>T0

1: Split the pre-treatment period into two parts: t ∈ [T−, 0] and t ∈ [1, T0];
2: Form predictions ĝj = fj({Yt, Xt}t<1) , j ∈ 1, . . . , p;
3: Compute Y o

0t for all t
4: for b = 1, . . . , B do
5: Return a sample {Ỹ ∗t , X∗t } of size T by performing circular block bootstrap on {Y o

0t, Xt} for t ∈
{1, . . . , T}

6: Compute ŵ∗0 on {Ỹ ∗t , ĝ(X∗t )}1≤t≤T0 according to (11)

7: Compute the predicted counterfactual Ŷ 0
0t

∗
=
∑p

i=1 ŵ∗0
(i)ĝ0

i (X
∗
t ), t > T0.

8: Compute the test statistics of interest for sharp and average null

T bS = (T − T0)−1/2
∑
t>T0

(
Ỹ ∗t − Ŷ 0

0t
∗)2

or T bA = (T − T0)−1
(∑
t>T0

Ỹ ∗t − Ŷ 0
0t
∗)2

;

9: end for
return q∗1−α as (1− α)-th quantile of the sample

T 1
S , T 2

S , . . . , T BS or T 1
A , T 2

A , . . . , T BA .
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