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Abstract

Publication decisions shape the process of scientific communication but also influ-
ence what and how research is conducted through their impact on the researcher’s
private incentives. We introduce a framework to study optimal publication decisions
when researchers can choose (i) how the study is conducted and (ii) whether to ma-
nipulate the research findings (e.g., via selective reporting). When manipulation is
not possible, but research entails substantial private costs for the researchers, some
unsurprising findings must be published to compensate for such costs. As a result, it
is optimal to incentivize cheaper experiments with lower accuracy as publication con-
straints become more binding. When manipulation occurs, it is optimal to allow for
biased studies and publish some unsurprising results. Even if it is possible to mandate
signals to deter manipulation (e.g., via pre-analysis plans), this is suboptimal when
the signals entail high (perceived) private costs for researchers.
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1 Introduction
Publication decisions can shape the process of scientific communication. By selecting what to
publish, journals affect which findings receive the most attention and can inform the public
about the state of the world. The design of publication rules has, therefore, motivated recent
debates on how statistical significance should affect publication when the goal is to publish
the most informative results (e.g. Abadie, 2020; Frankel and Kasy, 2022). It is typically
considered most informative to publish surprising results.

However, implicit in the goal of publishing is an equally important task: which findings
get published determines the incentives for researchers on how to conduct research. Re-
searchers have many degrees of freedom about how to conduct their research, such as how
and where to run an experiment (e.g. Allcott, 2015; Gechter and Meager, 2022); the size, cost,
and effort associated with the study (e.g. Thompson and Barber, 2000; Grabowski et al.,
2002); and which findings to report from a given study (Brodeur et al., 2020; Elliott et al.,
2022). We refer broadly to their decisions about each of these aspects of a study broadly
as a research design. As researchers choose their research designs, their private incentives
may influence many aspects of it. On the other hand, “while economists assiduously apply
incentive theory to the outside world, we use research methods that rely on the assumption
that social scientists are saintly automatons” (Glaeser, 2006). This raises the question of
how researchers’ incentives should impact the design of scientific communication.

This paper studies optimal publication decisions when the researcher chooses the research
design based on private costs and benefits. We frame this question as a mechanism design
problem: a social planner (principal) chooses optimal publication rules, taking into account
the incentives of the researcher (agent). The social planner aims to publish results that
are most informative to the public, net of the cost of (or constraints for) publishing, as in
Frankel and Kasy (2022)’s single-agent model. We focus on how publication decisions here
affect which research designs are chosen in the first place: given the publication rule, the
researcher chooses the design that maximizes her value for publication net of research costs.

As a concrete example, consider a medical journal seeking to decide whether to publish
results from a clinical study. The journal wants to convey accurate information about the
drug’s efficacy in the study (e.g. DeMaria, 2022; Ana, 2004). However, medical researchers
may respond in how they conduct their study through the size, length, cost of the study,
composition of the control group (Thorlund et al., 2020), and—in some cases—in which
specific findings to report (e.g., Riveros et al., 2013; Shinohara et al., 2015).

In Section 2, we introduce a framework that allows us to study how researchers’ incentives
affect (i) how the study is conducted and (ii) which findings are reported (e.g., occurring
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with data manipulation or selective reporting). We focus on Bayes’ optimal decision rules
under Gaussian priors—whose variance captures the audience’s uncertainty about the effect
of the study—and a quadratic loss that measures accuracy in the research findings. Our
main results disentangle the contributions of (i) and (ii) to the optimal publication rules.

In Section 3, we focus on (i) and abstract from data manipulation. Researchers choose
between (quasi)experiments with different variances and costs before the experiment result
is realized—as with pre-analysis plans—and truthfully report an unbiased estimate of the
study’s effect. Thus, the research design is common knowledge. The planner decides whether
to publish the study as a function of the study’s result and design, and upon publication,
the public updates its beliefs. The variance captures sampling variation, as well as ex-ante
variation due to a study random effect (which may arise with a study ex-post bias drawn
from a known distribution, see e.g. Rhys Bernard et al., 2024). That is, the variance defines,
in reduced form, the overall ex-ante mean-squared error.

Returning to our example, after providing a new drug to a treatment group, scien-
tists can evaluate its efficacy by comparing the treatment group to either an experimental
placebo group or using a pre-specified synthetic control group obtained from historical medi-
cal records (Popat et al., 2022; Yin et al., 2022). Whether a social planner should incentivize
one or the other (or combinations of these) is becoming a pressing issue for medical studies,
given its relevance for cost reduction (Jahanshahi et al., 2021; Food and Drug Administration,
2023). However, using a synthetic control group may increase the estimate’s mean-squared
error due to lack of randomization (see Raices Cruz et al., 2022; Rhys Bernard et al., 2024).

Since the research design is common knowledge, the planner can enforce the design she
prefers provided that it is individually rational for a researcher to implement the design.
In the absence of this individual rationality constraint, the first best policy would force the
researcher to conduct the study with the lowest mean-squared error. When the feasible
designs are two experiments that are inexpensive for the researcher to conduct, this policy
can be feasibly implemented by the planner; the individual rationality constraint does not
bind. This aligns with the lay intuition that (with a quadratic loss) we should prefer studies
with the lowest mean-squared error irrespective of the researcher’s private costs.

However, when the research cost of one of the designs is above a “tipping point,” the
publication decision rule can substantially affect whether it is individually rational for the
researcher to implement the first-best design. As a result, the planner’s Bayes optimal
publication implements an inexpensive experiment with non-negligible mean-squared error
instead of an experiment with no mean-squared error but sufficiently high cost. This devi-
ation from the first best is exacerbated when the planner faces more stringent constraints
for publication: with a higher cost of publication, the planner’s preference shifts towards
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less expensive experiments. Intuitively, for a costly experiment to be incentive-compatible,
the planner must increase its publication chances—irrespective of whether its findings are
surprising—to make researchers willing to run the experiment. Findings with little effect
on the audience’s belief get published at a possibly large (attention) cost since otherwise
the researcher would not conduct an expensive study. This analysis suggests that medical
studies with observational control groups are preferred over sufficiently expensive placebo
groups, even when the two have the same mean-squared error.

We next turn in Section 4 to scenarios where the researcher, after observing the study’s
result, can report a biased statistic from such a study. The bias is chosen by the researcher
and unobserved by the planner. The audience is unaware of possible manipulations of pub-
lished findings. We think of this model as a stylized description of settings with potential
selective reporting or data manipulation. The cost incurred by the researcher is increasing
in the bias (e.g., capturing reputational costs).

Each publication rule generates different degrees of data manipulation. Due to the ab-
sence of direct transfers and the inability to promise a publication probability above one, the
planner’s mechanism design problem is effectively one with limited transfers. As a result,
standard methods as in Mirrlees (1971) and Myerson (1981) do not apply. We character-
ize the solution of the mechanism design problem and show that the optimal publication
rule always satisfies three properties: (a) it increases the cutoff for which findings always
get published compared to settings without data manipulation; (b) just below this cutoff, it
randomizes publication chances, making the researcher indifferent between manipulating the
data or not; (c) in the planner’s preferred equilibrium, some data manipulation does occur.

To gain further insight, suppose first that the planner wrongly chooses the publication
rule that would be optimal without manipulation. This corresponds to publishing only if
the reported statistic is above a cutoff (function of the prior distribution, variance and cost
of publication). Then bunching would occur at the cutoff: researchers whose results are
around the cutoff would engage in manipulation (as documented in settings with p-hacking,
e.g. Elliott et al., 2022). The planner would therefore incur a loss due to possibly large bias.

As a second step, the planner publishes results below the cutoff with some positive
probability to make the researcher indifferent between manipulating and not the data. Ma-
nipulation (and bunching) does not occur anymore, but some uninteresting results do get
published. This is undesirable in the presence of publication costs or constraints.

As the last step, the planner increases the cutoff just enough to compensate for the loss
of publishing uninteresting results. Because the cutoff is more stringent, in the planner’s
preferred equilibrium, some researchers just below the new cutoff engage in data manipula-
tion to increase their publication chances. The loss from publishing some biased studies is
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second order relative to not publishing interesting findings.
In summary, publication decisions require slightly bigger effects to be certainly published,

publish some uninteresting results, and tolerate some bias at the margin. This is in stark
contrast with scenarios without manipulation, where only interesting results get published.

As a final exercise in Section 5, we combine these two models and ask whether the
planner should mandate the researcher to send a costly signal prohibiting data manipulation
(e.g., enforcing a pre-analysis plan) or allow for data manipulation without such a signal.
The (perceived) cost of the pre-analysis plan is private and only incurred by the researcher.
These scenarios correspond to our first and second models, respectively. In the absence of any
researcher’s cost associated with the signal (or study), the planner always prefers enforcing
unbiased estimates (see for example Spiess, 2024; Kasy and Spiess, 2023). Our core focus
here instead is on the cost associated with the design: taking into account the researcher’s
incentives, mandating a costly signal may decrease the supply of research.

For example, when the pre-analysis plan entails a substantial burden on the researcher
and increases her perceived cost of conducting the study (or decreases her perceived bene-
fit), the planner prefers no pre-analysis plan and enforces the publication rule with a more
stringent cutoff. This preference is exacerbated as the publication constraints become more
binding. Intuitively, with a higher perceived cost of the pre-analysis plan, researchers may
give up on conducting the study unless the planner publishes findings that are less interest-
ing to the public. This is undesirable for the planner when there are publication constraints.
In this case, enforcing the optimal publication rule under (unobserved) data manipulation
increases the planner’s objective and does not restrict the supply of research. This final re-
sult, therefore, complements a large empirical literature on this topic (Olken, 2015; Banerjee
et al., 2020; Miguel, 2021) by illustrating trade-offs in the use of a pre-analysis plan which,
we show here, are tightly linked with its perceived cost on the researcher.

Related literature This paper connects to a growing literature that studies economic
models to analyze statistical protocols. In the context of scientific communication, Abadie
(2020); Andrews and Shapiro (2021); Andrews and Kasy (2019); Kitagawa and Vu (2023),
and most closely related Frankel and Kasy (2022) have analyzed how research findings are
or should be reported in research studies to inform the public. Different from this paper,
none of these references account for the researcher’s incentives in the design of the optimal
communication protocol. Our goal here is to formally analyze the effect of different commu-
nication strategies on the incentives of the researcher. This allows us to show that optimal
publication should not only depend on the relevance of the findings, but also on the research
costs and incentives associated with these.
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We connect to a broad literature on statistical decision theory (e.g. Wald, 1950; Savage,
1951; Manski, 2004; Hirano and Porter, 2009; Tetenov, 2012; Kitagawa and Tetenov, 2018),
focusing in particular on settings with private incentives of researchers. Other work in this
line include Chassang et al. (2012); Tetenov (2016); Banerjee et al. (2017); Spiess (2024);
Henry and Ottaviani (2019); Banerjee et al. (2020); Di Tillio et al. (2021); Viviano et al.
(2024); Williams (2021); McCloskey and Michaillat (2022); Yoder (2022); Bates et al. (2022);
Libgober (2022); Bates et al. (2023); Kasy and Spiess (2023), with a particular focus here on
the publication process. Different from these references, we both analyze settings where the
researcher may choose the research design absent private information, or choose the design
and manipulate reported findings with private information. This allows us to formalize
trade-offs between different publication strategies, and formally study ideas when/whether
unsurprising results should be published, and whether data manipulation should occur in
equilibrium (Glaeser, 2006).

In particular, an important distinction from some of these models studying approval
decisions, such as Tetenov (2016); Viviano et al. (2024); Bates et al. (2022, 2023) is that
these papers assume that researchers thruthfully report the statistics sampled from their
study (abstracting from questions about data manipulation or design choice studied in this
paper). Spiess (2024) and Kasy and Spiess (2023) study models of scientific communication,
without, however, focusing on optimal publication rules studied here. Different from these
references, here we incorporate the researcher’s costs of the design (and misreporting), which,
we show, leads to qualitatively different solutions in the amount of misreporting. Di Tillio
et al. (2021) study the different question of selective sampling, and Henry and Ottaviani
(2019) study the question of decisions with continuous and sequential access to the data,
different from the question of selective design choice studied here.

Finally, a large empirical and econometric literature has documented several aspects of
the research process, including selective reporting, data manipulation, specification search,
as well as site selection bias and observational studies’ bias (e.g. Allcott, 2015; Gechter and
Meager, 2022; Rosenzweig and Udry, 2020; Elliott et al., 2022; Brodeur et al., 2020; Miguel,
2021; Olken, 2015; Banerjee et al., 2020; Rhys Bernard et al., 2024). Our contribution here
is to provide a formal theoretical model that studies how incentives interact with some of
these choices, shedding light on qualitative aspects of optimal publication rules.

2 Setup
Consider three agents: a researcher, a (representative) reader, and a social planner. The
reader and social planner are interested in learning a given parameter θ0 ∈ Θ, such as the
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average treatment effect of a given intervention. A researcher conducts a study to inform
the reader about θ0. A study is summarized by (X,∆), where ∆ denotes the design and

X(∆)|θ0 ∼ N
(
θ0 + β∆, S

2
∆

)
, θ0 ∼ N (0, η20) (1)

where β∆ and S2
∆ denote the bias and variance of a design ∆ and η20 the prior variance.

If a study arrives, it will be evaluated according to a decision rule p(X,∆) ∈ [0, 1],
interpreted as the decision to publish the findings of the study, where p ∈ P lies in a pre-
specified space P which is subset of all Borel measurable functions. Constraints encoded in
P may capture constraints on the information about ∆ available to the social planner. The
reader takes an action

a⋆p(X(∆),∆) =


Xη20

S2
∆+η20

if p(X,∆) = 1

0 otherwise.

That is, the audience forms posterior beliefs about θ0 assuming β∆ = 0, and ignores publi-
cation decisions when findings are not published. As η20 → ∞ or S2

∆ → 0, this is equivalent
to stating that the action of the audience is to use X as a prediction for the parameter θ0

when the finding is published, and use the prior mean otherwise.
Given (X,∆, θ0), the planner incurs a loss

Lp(X,∆, θ0) =
(
θ0 − a⋆p(X,∆)

)2
− cpp(X,∆). (2)

Here, we are interested in the distance between the audience’s action and θ0; cp denotes the
publication (opportunity) cost, capturing publication or attention constraints.

As standard practice, whenever the researcher is indifferent between two designs, we
implicitly assume she chooses the design that minimizes the planner’s expected loss.

Conditional ∆, publication decision p, and statistics X(∆), the researcher’s (expected)
payoff for given (possibly randomized) publication decision p(·) equals

vp(X(∆),∆) = p(X(∆),∆)− C∆, C∆ ≤ 1 (3)

where C∆ is the (expected) cost to publication over its benefit associated with a given design
∆. Note that C∆ may denote direct, indirect or even perceived costs associated with the
design ∆.1 Note that there are no economic transfers between the planner and the researcher:
the researcher can only be incentivized by increasing its publication probability.

We will consider separately two scenarios: in Section 3, we assume that the researcher
1We assume C∆ ≤ 1, since otherwise the design ∆ is trivially never chosen by the researcher.
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chooses ∆ before observing X(∆), and ∆ is of common knowledge. In Section 4, the re-
searcher first observes each statistic associated with ∆ and then privately chooses ∆.

3 Publication rules with observed design choice
This section studies a simple model where each design presents no bias β∆ = 0, but different
designs may be associated with different variances S2

∆ and costs C∆. The researcher chooses
the design ∆ before observing the statistics X(∆) and ∆ becomes common knowledge.

Assumption 3.1. Let ∆ ∈ {E,O}, i.e., researchers can choose between two different designs
(E,O), with βE = βO = 0. Each design is associated with variances S2

E ≤ S2
O < κ, and

costs CE ≥ CO ≥ 0, for arbitrary positive κ < ∞. For given p, the researcher chooses ∆

to maximize up(∆) = E[vp(X(∆),∆)] where the expectation is with respect to (X(∆), θ0)

distributed as in Equation (1). Once the researcher chooses ∆, this becomes of common
knowledge. The social planner minimizes E[Lp(X,∆, θ0)] where the expectation is over
(X, θ0) as in Equation (1) with β∆ = 0.

The design ∆ and its corresponding variance S2
∆ are observed by the social planner. We

will refer to ∆ = E as an experiment and ∆ = O as an observational study, using the choice
between an experiment or observational study as a leading example throughout this section.2

Returning to our example in a clinical study, ∆ = E is a medical study with a treatment
and placebo control group and ∆ = O is a medical study with a pre-specified synthetic
control group. The experiment has a positive cost, e.g., associated with raising funds to
also recruit patients in the placebo group. The observational study has a smaller cost since
researchers only have to recruit the treatment but not control group. Similarly, we assume
βO = 0, and think of S2

O as the overall ex-ante mean-squared error of the study. When a bias
occurs in the observational study, we think of this as a random effect whose contribution
enters directly into S2

O as we discuss further in Example 3.1.3

Example 3.1 (Experiment and Observational study). Let X(E) = θ0+εE, X(O) = θ0+bO+

εO, where εE ∼ N (0, S2
E) denote the estimation noise from an experiment, εO ∼ N (0, σ2

O)

denotes the estimation noise from an observational study and bO|εO ∼ N (0, σ2
B) denotes

the observational study’s random effect which capture unobserved bias drawn from a fixed
(Gaussian) distribution. For example, Rhys Bernard et al. (2024) empirically investigates

2As shown below Equation (7), it is possible to directly extend our results to settings where ∆ ∈ {∅, O,E},
where ∆ = ∅ implies that no study is conducted. This is omitted here for brevity.

3As we further discuss just below Equation (7) it is also possible to consider “no study”, equivalent to
S2
O = ∞.
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| | | |

Design Experiment Evaluation Audience

∆ X ∼ N (θ0, S∆) p(X,∆) a⋆(X,∆)

Figure 1: Illustration of the variables in the model. First, researchers pre-specify the population of interest. Second, they run an
experiment and draw a statistic X. Finally, a social planner evaluates the experiment based on a decision rule p(X,∆) ∈ [0, 1].
Finally, the reader forms a posterior belief about the estimand of interest.

the distribution of bO through a meta-analysis, where σ2
B captures the impact of the random

bias in statistics’ distribution.4 We can write X(O) = θ0+ε′O, ε
′
O ∼ N (0, S2

O), S
2
O = σ2

B+σ2
O,

where σ2
B is the variance of an irreducible error arising the variance of the bias.

Example 3.2 (Cheap and costly experiment). Suppose that E corresponds to an experiment
with costly implementation CE, where O is an experiment with possibly different variance,
but smaller cost of implementation. In this case E[X(E)|θ0] = E[X(O)|θ0] = θ0 while the
two experiments may have different costs (and variances).

3.1 Publication of experiments

As a first step, we characterize optimal publication when the researcher must run an exper-
iment (∆ = E). Before doing so, we need to introduce the following definitions.

Definition 3.1 (Constrained publication rule). Define

p⋆∆ ∈ argmin
p∈P

E [Lp(X(∆),∆, θ0)] , such that E[vp(X(∆),∆)] ≥ 0, (4)

the best planner’s action for a given design ∆ under the individual rationality constraint,
where P is the set of all Borel measurable functions.

Definition 3.1 defines a publication rule that minimizes the loss of the social planner for
a given design ∆, forcing the utility of the researcher to be weakly positive.

Definition 3.2 (Cheap and expensive design). Design ∆ is a cheap if C∆ ≤ P (|X(∆)| ≥ γ∗
∆) ,

where γ∗
∆ =

S2
∆+η20
η20

√
cp, and expensive otherwise.

4Whenever bO has non zero expectation we can think of X recentered by its expectation, that can be
learned through meta-analyses, see e.g. Rhys Bernard et al. (2024). It is also possible to extend the model
to allow the bias to be a random effect, and the audience not to incorporate information about the variance
of the bias in its updating rule, see Remark 4.
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Definition 3.2 classifies experiments into two categories depending on whether the cost of
the experiment is sufficiently smaller than the cost of publication and its variance. The choice
of the threshold depends on three main components: the prior variance of the parameter of
interest η20, the variance of the experiment S2

E, and the cost of publication cp. Whenever cp

increases, CE must become smaller for an experiment to be classified as cheap.

Lemma 3.1 (Publication rules for experiments). The following holds:

p⋆∆(X) =

1
{
|X| ≥

∣∣Φ−1(C∆/2)
∣∣√S2

∆ + η20

}
if ∆ is an expensive design,

1 {|X| ≥ γ∗∆} , otherwise.
(5)

Proof of Lemma 3.1. See Appendix A.2.

Lemma 3.1 characterizes optimal decision rules for experiments under the constraint that
the researcher runs an experiment. Here, p⋆E depends on the variance of the statistic X(E),
the prior variance η20, the cost of publication cp and the cost of the experiment CE. Whenever
the experiment is a cheap study, the publication rule is as in Frankel and Kasy (2022); when
instead it is an expensive study, the publication rule is similar in spirit to maximin approval
decisions in Tetenov (2016) who study hypothesis testing without endogenous choice of the
design. Therefore, the dependence of p⋆E with the cost of the experiment CE differs from
publication rules in Frankel and Kasy (2022), who do not consider the researcher’s incentives
in the publication process. Similarly, the dependence of the publication rule with the cost
of attention cp differs from approval decisions in Tetenov (2016) and Viviano et al. (2024).

Also, different from previous references, Lemma 3.1 distinguishes two scenarios. For cheap
experiments, the threshold does not depend on the cost of the experiment. For sufficiently
costly experiments, the threshold is increasing in the cost of the experiment.

Remark 1 (Prior mean different from zero). Our framework directly extends to θ0 ∼
N (µ, η20) for prior mean µ. In general, µ defines audience’s action in the absence of publica-
tion. In this case, the optimal publication rule takes the form of |X − µ| ≥ t for a threshold
t as in Lemma 3.1. Therefore, as in Frankel and Kasy (2022), we should interpret surprising
results as those that move the audience away from its default action µ.

3.2 Choosing the design

Given Lemma 3.1, we study optimal choice between an observational study or experiment.
Let L∗

∆ = E
[
Lp⋆∆

(X(∆),∆, θ0)
]

denote the optimal expected loss conditional on implement-
ing design ∆. Because ∆ is observed by the social planner, the social planner can incentivize
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the loss-minimizing design ex ante by setting

p⋆(X,∆) = 1{∆planner = ∆}p⋆∆(X), ∆planner ∈ arg min
∆∈{E,O}

L∗
∆. (6)

It is immediate that p⋆(X,∆) maximizes the planner’s utility, and it is implementable.
Motivated by this observation, we compare the loss function of the social planner when

the researcher implements the experiment or observational study, and the planner chooses
the optimal publication rule for each design p⋆∆.

As a first step, note that from Lemma A.6 we can write for an expensive experiment

L∗
E

η20
= 1 +

CEcp
η20

− η20
S2
E + η20

+ r′ (7)

for a small reminder r′ = O((1− CE)
3). Here the denominator η20 corresponds to the social

planner’s loss when no study is implemented. Therefore, whenever Ce
cp
η20

>
η20

S2
E+η20

the planner
prefers no study as opposed to the expensive experiment (even if the research cost is paid
privately by the researcher).

This result follows from “scarcity of attention” in our model: for a higher cost of publi-
cation, we want to publish fewer results. However, experiments with larger implementation
cost CE must be published with higher frequency, to incentivize the researcher to run the
study. Therefore, when publication constraints become more binding, the preference of the
social planner shifts towards less expensive experiments. We formalize this intuition below.

Proposition 3.1 (Experiment vs. observational study). Let Assumption 3.1 hold.

(i) Two expensive designs: Suppose E and O are both expensive designs, with CE ≥ CO >

δ > 0 for a positive constant δ > 0. Then

L∗
E − L∗

O

η20
=

cp
η20

(CE − CO) +
η20

(S2
E + η20)(S

2
O + η20)

(S2
E − S2

O) + r (8)

for a remainder r with |r| ≤ Kδ

{
(1− CE)

3 + (1− CO)
3
}

, for finite constant Kδ < ∞.

(ii) Expensive vs. cheap design: Suppose E is an expensive design with CE ≥ δ > 0 and
O is a cheap design. Then Equation (8) holds with λ∗

O = 1− 1
3
√
2π

c
1/2
p

η0

√
S2
O

η20
+ 1 in lieu

of CO and r′ in lieu of r, |r′| ≤ Kκ,δ

{
(1− CE)

3 +
c2p
η40

}
for a finite constant Kκ,δ < ∞.

(iii) Two cheap designs: If E and O are both cheap designs, L∗
E − L∗

O > 0 if and only if
S2
E > S2

O.

Proof of Proposition 3.1. See Appendix A.3.
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Proposition 3.1 provides explicit comparisons between an experiment and an observa-
tional study. Here (i) compares two expensive designs, (ii) an expensive experiment and a
cheap observational study and (iii) a cheap experiment and observational study.

Clearly, if the observational study has a much larger variance than the experiment (SO−
SE ≫ 0), publishing the observational study is sub-optimal. In statistical terms, if a cheap
study only “weakly identifies” θ0, this is expected to be dominated by an expensive study.
Similarly, if both the experiment and observational study are cheap, the private research
cost should not affect the planner’s decision between the two.

Consider instead the more interesting scenario where research costs are binding. For
instance, we may be in scenario (i), where the observational study is expensive (but possibly
not “too costly”), or scenario (ii), where the experiment is expensive, and the observational
study is cheap.5 Returning to our medical study example, we may expect that the obser-
vational study is expensive when it requires recruiting the treatment group, and it is cheap
if recruiting the treatment group is costless. In these cases, experiments with lower vari-
ance than observational studies may not be preferred over observational studies. This is
because as the cost becomes binding the planner must publish some uninteresting results at
a (possibly large) publication costs. This is suggestive that medical studies with synthetic
control groups may be preferred over placebo groups when the cost of the placebo group is
sufficiently large. As the cost of publication becomes more binding, the planner’s preference
shifts towards less costly studies.

Table 1 summarizes the implication of our findings as the cost of the experiment CE

and the cost of attention cp vary. Similarly, Figure 2 shows how the planner’s preference
shifts towards noisy observational studies even when the experiment has no variance and the
observational study is a cheap study.

In summary, these results are suggestive that attention costs can make the planner’s
utility decreasing in research costs, even when these are private. This introduces trade-offs
in the optimal accuracy of an experiment as we further discuss in Remark 2.

Remark 2 (Choice of the sample size). Our framework allows us to study choices of optimal
sample size taking into account the corresponding cost, once we let CE(S

2
E) be an explicit

function of the variance S2
E. Let CE(S

2
E) = cf + cv

S2
E

as a function of a fixed cost cf and
variable cost cv. For a cheap experiment, we simply choose the smallest variance that
guarantees that the researcher runs the experiment or not. For an expensive experiment, we

5For (ii) we typically expect CE > λ∗
O as λ∗

O approximates the publication probability for a cheap study.
Here, to simplify exposition, here we provide comparisons up to reminders r, r′, where r′ is small when
cp/η

2
0 < 1, i.e., when it is typically better to publish some study. The Appendix contains a complete

characterization of such reminders.
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Table 1: Practical implications of Proposition 3.1 when O is a cheap design. The table summarizes the intuition that for cheap
experiments, we should prefer experiments over observational studies if their mean squared error is smaller than the one of an
observational. For expensive experiments, comparisons also depend on the cost of the experiment.

Cost of experiment Cost of publication MSE comparison Choosen design
CE small cp any S2

E − S2
O < 0 Experiment

CE any cp any S2
E − S2

O > 0 Obs studies
CE any cp small S2

E − S2
O < 0 Experiment

CE large cp any S2
E − S2

O ≪ 0 Experiment
CE large cp large S2

E − S2
O ̸≪ 0 Obs studies

Observational study

Experiment(SE
2 = 0)

High Pub Cost

Low Pub Cost
0.00

0.25

0.50

0.75

1.00

0.5 0.6 0.7 0.8
CE

S
O2

Precise Expensive Exp vs Obs Studies

Figure 2: The figure reports on the x-axis the cost of a non-cheap experiment with no variance (S2
E = 0), and on the y-axis the

rescaled squared error S2
O/η20 of a cheapobservational study using the exact expression obtained from Lemmas A.2 and A.3 The

red line denotes the frontier of values for cost of publication cp/η20 = 0.5, and the blue lines for the higher cost of publication
cp/η20 = 1. The region above the blue line denotes the set of values under which an experiment is preferred for a large cost of
publication, and the area above the red line denotes the low cost of publication. The figure shows that an observational study
may be preferred over an experiment, even if its mean squared error is larger (but not too large), whenever the experiment is
sufficiently costly. As the cost of publication increases, the planner prefers more the observational study.

can invoke Lemma A.5 and obtain (approximate) first order conditions cpcv =
S4
E

(S2
E/η20+1)2

. It
follows that whenever η0 ≫ SE, at the optimum

S2
E ≈ √

cpcv.

That is, for an expensive experiment, we choose the variance proportional to the square
root of the cost of publication and variable cost. This choice is dictated by the researcher’s
constraints. As the variable cost increases, the researcher’s cost increases, which is com-
pensated by an increase in the variance. Similarly, as the publication constraint becomes
more binding, we prefer less costly (and hence less accurate) experiments. This motivates a
variance S2

E increasing in the cost of publication cp.

Remark 3 (Multiple publications for costly experiments). To incentivize costly experiments,
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it is possible to allow researchers to publish two papers using the same data collected in the
experiment. This form of incentive implicitly increases the rewards to researchers for large
experiments or equivalently halves the cost CE of the experiment paid by the researcher and
doubles the cost of publication to 2cp. Publishing two papers with the same experimental
data may be optimal for some costly experiments.

Remark 4 (Harmful observational studies). Here, a cheap design (whether it is observa-
tional or experimental) always outperforms conducting no study. One could consider sce-
narios where observational studies are harmful to the audience even in the absence of data
manipulation. This occurs when the audience fails to incorporate the bias of a study when
updating their beliefs. Returning to Example 3.1, this corresponds to assuming that the
audience’s posterior belief overweight the statistic from an observational study, forming an
incorrect belief X(O)w as opposed to X(O)w′, where w =

η20
σ2
O+η20

≥ w′ =
η20

σ2
O+η20+σ2

B
.

In these contexts, the planner’s preference shift towards experiments. For example, the
planner may prefer a cheap experiment over a cheap observational study even when the
experiment has a larger mean squared error than the observational study.

4 Publication rules with p-hacking
In this section, we turn to optimal publication rules when researchers choose the research
design ∆ using information of the statistics drawn in the experiment. Here, the design ∆

(and its corresponding bias β∆) are unknown to the social planner but not to the researcher.
Specifically, we consider the following model.

Assumption 4.1. Consider a class of designs ∆ ∈ R ∪ ∅, with β∆ = ∆ known to the
researcher but not to the social planner, and X(∆) = θ0 + β∆ + ε, ε|θ0 ∼ N (0, S2

E), for
∆ ̸= ∅. The researcher observes θ0 + ε and chooses ∆ (and so β∆) to maximizes her realized
payoff vp(X(∆),∆) in Equation (3), after observing X(∆). Let C∆ = cd|β∆|+ ce for ∆ ̸= ∅
where cd < ∞, ce < 1, and C∅ = 0. The social planner chooses p(X) as a function of X only
(and not ∆).

Figure 3 illustrates the model: the researcher chooses deterministically the bias of the
reported statistic. She, however, pays a cost C∆ increasing in the bias. We think of the
researcher’s action as a stylized description of data manipulation or selective reporting. In
particular, researchers, after looking at the data, can change their specification by, e.g.,
changing the covariates in a regression, winsorizing the data in particular ways, or making
other design choices functions of the statistics. In our stylized description, this is approxi-
mated by defining X as the sum of θ0 + ε plus a bias arising from manipulation. The cost
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C∆ captures reputational or computational costs associated with the manipulation, assumed
to be increasing and linear in the bias β∆. The researcher observes θ0 + ε, and hence, she
maximizes her realized utility conditional on the observed statistics when choosing ∆. As we
discuss in Section 2, the audience (but not the planner) is unaware that published findings
may have some data manipulation.

| | | |

Stastistic Manipulation Evaluation Audience

X ′ = θ0 + ε X = X ′ + β∆ p(X) a⋆(X)

Figure 3: Illustration of the variables in the model. First, researchers observe the vector of statistics. They then manipulate
the design by introducing a bias into the statistics and maximize their private utility. The social planner does not observe the
bias, and evaluate the study based on a publication function p(X) that only depends on the statistics X.

Finally, note that we assume that the variance of the residual noise ε is independent
of ∆ and equal to S2

E. Our results will be valid for any S2
E including S2

E ≈ 0 as in large
observational studies. We interpret this assumption as stating that the variance of the
statistic is observable to the planner and audience and truthfully reported by the researcher,
focusing on mechanisms that introduce unobserved bias in the reported statistic.

4.1 Optimal publication rule under manipulation

The planner does not observe β∆, knows S2
E, and minimizes her expected loss over (θ0, ε),

keeping into account the best reaction of the researcher. That is, we define an optimal
publication rule as

p⋆ ∈ argmax
p∈P

EX,θ0

[
Lp(X(∆⋆

p),∆
⋆
p, θ0)

]
, ∆⋆

p = argmax
∆

vp(X(∆),∆) (9)

where P is the set of all Borel measurable functions p(X, d) constant in d (i.e., do not depend
on the design), which we write without loss as p(X) (note that p may implicitly depend on
S2
E). Here, X satisfies Assumption 4.1 and ∆⋆

p denotes the optimal researcher’s response.
The publication rule only depends on X but not on ∆, as this is chosen privately by the
researcher. Before introducing our next theorem we introduce the following definition.
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Definition 1. A linearly smoothed cutoff rule with cutoff X∗ and slope m is defined by

pX∗,m(X) =


0 if |X| ≤ X∗ − 1

m

1−m(X∗ − |X|) if X∗ − 1
m

< |X| < X∗

1 if |X| ≥ X∗

.

A linearly smoothed cutoff rule considered here is a deterministic publication rule above
and below thresholds (X∗ − 1

m
, X∗) for given m and it randomizes the publication chances

between these two values, with publication probability increasing in the value of the re-
ported statistic |X|. To gain further intuition, consider the threshold γ∗

E =
S2
E+η20
η20

√
cp. Then

X∗ = γ∗
E and m = ∞ corresponds to a publication rule in Frankel and Kasy (2022), i.e., a

publication rule for cheap experiments. When m < ∞ and X∗ > γ∗
E, the linearly smoothed

cutoff rule publishes with probability one more surprising results than rules in the absence
of manipulation, while randomizing around the threshold. In the following theorem we
characterize the optimal publication probability in contexts with manipulation.

Theorem 1 (Optimal publication probability). Under the model in Assumption 4.1:

(a) There is a cutoff X∗ ∈
(
γ∗
E, γ

∗
E + 1−ce

cd

)
such that pX∗,cd is optimal.

(b) For each optimal publication rule p, there exists X∗ ∈
(
γ∗
E, γ

∗
E + 1−ce

cd

)
such that

p⋆(X) = pX∗,cd(X) (resp. p⋆(X) ≤ ce) for almost all X ≥ 0 with pX∗,cd(X) > ce

(resp. pX∗,cd(X) ≤ ce).

Proof. See Appendix A.4.

Theorem 1 characterizes the optimal publication rule under manipulation. The rule is a
smoothed cutoff rule that: (i) does not publish results below a certain cutoff X∗ − 1

cd
; (ii)

randomizes whenever X is just above the cutoff X∗ − 1
cd

but below X∗ and it publishes for
results above X∗.

To gain further intuition, it is instructive to compare this with the optimal publication
rule for a cheap experiment in Lemma 3.1. For simplicity, suppose ce = 0 so that we abstract
from fixed costs. Consider first a scenario in which the social planner ignores manipulation.
Then we would observe bunching around the cutoff to publish γ∗

E, as researchers with θ0+ε ∈
(γ∗

E − 1
cd
, γ∗

E) would introduce a bias to publish. Researchers with θ0 + ε < γ∗
E − 1

cd
would

find it nonprofitable to introduce any bias (as the cost would not compensate the benefits)
and therefore would not publish.

Next, suppose that the planner introduces randomization in the publication rule whenever
X ∈ (γ∗

E − 1
cd
, γ∗

E) as described in Theorem 1. It follows that the randomization device in
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Theorem 1 makes the researcher indifferent between manipulating and not manipulating the
data, at the cost of publishing some unsurprising results. However, this choice is sub-optimal
as the planner may publish too many unsurprising results.

The last step is to increase the threshold X∗ to compensate the loss from publishing
unsurprising results. In summary, optimal publication rules with manipulation (a) increase
the cutoff for publication; (b) allow for randomization at the margin below the cutoff.

Table 2 illustrates main features associated with each action. The first action is equivalent
to ignoring manipulation, as in settings considered in Frankel and Kasy (2022). Manipulation
in this scenario has testable implications since it introduces large bunching around the cutoff,
see e.g., the discussion in Elliott et al. (2022) among others. Through sufficient randomization
below the cutoff, we can guarantee no bunching (and no manipulation). The last step is
then to increase the cutoff. We should then observe just some bunching above the old cutoff
and below the new one (see Proposition 4.1). This corresponds to the planner’s preferred
publication rule.

Table 2: Sequence of actions to decrease the loss function. We start from a simple cutoff rule for cheap experiment wrongly
assuming no data manipulation. Under this rule, we observe bunching of X around the cutoff. We then randomize below the
cutoff to make researcher indifferent between manipulation and not. Finally, we increase the cutoff to publish less unsurprising
results.

Action Testable observation Published findings Manipulation
Select optimal cutoff rule without manipulation Large bunching Only surprising findings are published Large

Add randomization below cutoff No bunching Many unsurprising findings are published None

Increase the cutoff + randomize below Some bunching Some unsurprising findings are published Some

4.2 Some implications

In this section, we explore some of the implications of Theorem 1. The first implication we
study is whether, in the planner’s preferred equilibrium, some researcher would manipulate
their findings.

Proposition 4.1 (Manipulation in equilibrium). Under the model in Assumption 4.1, under
the publication rule in Theorem 1 and the planner’s preferred equilibrium for |θ0 + ε| ∈
(γ∗

E, X
∗), we have |β∆⋆

p⋆
| > 0.

Proof. See Appendix A.5.

Proposition 4.1 states that some manipulation should occur just below the threshold.
Intuitively, if researchers could not manipulate their findings, then at the optimum, we
would have published findings above the threshold γ∗

E. However, because manipulation can
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occur, the social planner increases the threshold from γ∗
E to X∗. It follows that manipulation

is beneficial in the interval between the old threshold γ∗
E and the “new” threshold X∗. It

guarantees that findings that should have been published in the absence of manipulation do
get published, while the cost of manipulation is second order. This result suggests that in
equilibrium, we should not force manipulation to be exactly zero. A practical implication of
Proposition 4.1 is that we observe a discontinuous distribution of X below X∗ and above γ∗

E

at the optimum.
As a second exercise, we study the role of fixed costs in the presence of manipulation.

Proposition 4.2 (Implementation costs). Under the model in Assumption 4.1, for ce ≥
1 − cdγ

∗
E, the set of optimal cutoffs X∗ in Theorem 1 is decreasing in ce in the strong set

order.

Proof. See Appendix A.6.

Proposition 4.2 shows that for expensive studies, the social planner lowers the cutoff as
the fixed cost increases. This result is suggestive that less surprising results may be published
more when the study is sufficiently costly. It differs from what we found in Proposition 3.1
in the absence of manipulation: in the absence of manipulation, the planner may force the
researcher to run cheap over expensive studies. However, with manipulation, fixed costs
imply a lower chance of manipulation, motivating increasing the chance of publication for
such studies.

Next, we states that some findings below the optimal cutoff γ∗
E in the absence of data

manipulation, do get published in the planner’s preferred equilibrium under manipulation.

Proposition 4.3 (Some unsurprising results are published). Under the model in Assumption
4.1, under the publication rule in Theorem 1 and the planner’s preferred equilibrium, for
some values of |θ0 + ε| < γ∗

E, we have p⋆(X) > 0 but β∆∗
p∗

= 0.

Proof. See Appendix A.7.

Proposition 4.3 shows that some unsurprising results that would have not been published
without manipulation do get published under the optimal publication rule with manipulation.
This feature is not due to manipulation of these results, but rather to deter manipulation.
It is in stark contrast with the optimal publication rule without manipulation as in Frankel
and Kasy (2022).

18



5 Implications for alternative publication mechanisms
In this section we study the implications of our results for alternative publication mecha-
nisms, such requiring pre-analysis plans or introducing a registry of non-surprising results.

5.1 Pre-analysis plans

We first study the implications of Theorem 1 for pre-analysis plans.

Definition 5.1 (Pre-analysis vs possible manipulation). Consider the following:

(A) Pre-analysis plan: Researchers cannot manipulate their findings (cd = ∞), thrutfully
report X = θ0 + ε, and pay a fixed cost ce > δ, for arbitrary constant δ > 0; this
scenario corresponds to the model in Assumption 3.1, with ∆ = E and cost ce. The
social planner chooses a publication rule p⋆E as in Definition 3.1 and incurs a loss
L∗

E = E[Lp⋆E
(X,E, θ0)] where X, θ0 are distributed as in Equation (1) with βE = 0.

(B) Possible manipulation: Assumption 4.1 holds, with ∆ ∈ R ∪ ∅ with cd < ∞, ce = 0,
corresponding to researcher able to manipulate their findings after observing θ0 + ε.
The social planner chooses a publication rule p⋆ as in Equation (9) and incurs its
corresponding expected loss L∗

M = EX,θ0

[
Lp⋆(X(∆⋆

p⋆),∆
⋆
p⋆ , θ0)

]
under the planner’s

preferred equilibrium.

Scenario (A) states that the researcher cannot manipulate her findings but pays a fixed
cost ce, interpreted as the cost that guarantees no bias in the study.6 The cost ce may
capture either costs of conducting a new experiment, or perceived (psychological) costs of
the pre-analysis plan.

Scenario (B) allows for manipulation of the findings, with the researcher not required
to write a pre-analysis plan. In this case, we assume for simplicity no fixed costs ce = 0,
but possible (reputational) costs associated with manipulation. We think of (B) as scenarios
where an experiment or observational study is already available to the researcher (and there-
fore, its cost is sunk). For simplicity here, we implicitly assume the two studies have the
same variance equal to S2

E, although one could extend these results to different variances.

Proposition 5.1 (Value of pre-analysis plan). Under (A) and (B) in Definition 5.1:

(i) If ∆ = E is a cheap design, then L∗
E − L∗

M ≤ 0;
6For simplicity, we consider here settings where, once the researcher commits to (A), the planner chooses

the optimal publication probability such that the researcher is better off to (ex-ante) choose to conduct the
experiment instead of doing no study. This implies that the benefits from such a study under the optimal
publication rule outweigh the benefits from no study.
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(ii) If ∆ = E is an expensive design, then

1

η20

(
L∗

E − L∗
M

)
≥ cp

η20
(ce − λ∗

E)−
1

η20c
2
d

+ r′

where λ∗
E = 1 − 1√

2π3

c
1/2
p

η0

√
S2
O

η20
+ 1, |r′| ≤ Kκ,δ

(
(ce − 1)3 +

c2p
η40

)
for a finite constant

Kκ,δ < ∞.

Proof. See Appendix A.8.

In Proposition 5.1, we show that a pre-analysis plan is preferred over no pre-analysis plan
if the cost of the pre-analysis plan is sufficiently low.

When the (perceived) cost of a pre-analysis plan is high, the trade-off depends on (i) the
perceived cost of a pre-analysis plan ce and (ii) the cost of data manipulation cd. Clearly, if
cd = 0, then a pre-analysis plan may be preferred. Intuitively, with a low cost of manipula-
tion, the planner must publish with positive probability a larger set of unsurprising results,
at a possibly large publication cost.

Suppose instead cd < ∞. Then, no pre-analysis plan is preferred for sufficiently high
researcher’s perceived cost. This is despite the cost of the pre-analysis plan ce being private
and paid by the researcher and not by the planner.

Different from (and complementary to) models where either no experimentation or no
reputational costs occur (e.g. Kasy and Spiess, 2023; Spiess, 2024), these results illustrate
trade-offs in the choice of the pre-analysis plans. A larger perceived cost of pre-analysis may
decrease the supply of research, making the planner prefer possible manipulation.

5.2 Registry of unsurprising results

A core theme is that if attention is costly, publication decisions must take into account the
private research cost. It is natural to ask whether we can think of publication mechanisms
that reward studies without paying such a cost of attention.

For instance, consider a scenario where the researcher conducts a (possibly) expensive
study with cost CE in the model in Section 3 – i.e., abstracting from manipulation for
simplicity. Because attention is costly, we only want to publish sufficiently surprising results.
Suppose that we implement the first-best policy, ignoring the researcher’s costs. Following
Lemma 3.1, this takes the form p⋆E = 1{|X| ≥ γ∗

E} of a threshold crossing rule.
In our model in Section 3, if the experiment is costly, however, the researcher may

choose the outside option. To guarantee implementability of p⋆E suppose now we can reward
the researcher whose results are not published in the journal by publishing the results in
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a repository of unsurprising results. This repository may have no cost cp and guarantee
a reward R to the researcher. The researcher’s objective function upon conducting the
experiment reads as

E[vp⋆E(X(E), E)] = P(|X(E)| ≥ γ∗
E) + RP(|X(E)| ≤ γ∗

E)− CE.

When choosing R ≥ CE+1
P(|X(E)|≥γ∗

E)
− 1, the researcher is always indifferent between conducting

or not the research study. Rewarding results through a “repository of unsurprising results”,
with a reward increasing in the cost of the experiment guarantees that the first-best policy
is implementable at no attention cost for the audience.

6 Conclusion
This paper studies how researcher’s incentives shape the optimal design of the scientific
process. Ignoring the researcher’s incentives, it is optimal to publish the most surprising
results (Frankel and Kasy, 2022). When researcher’s incentives matter, we show that optimal
publication rules depend on private costs of research and incentives for research manipulation.

As a first exercise, we show that, in the absence of manipulation, the planner prefers
(quasi)experiments with lower accuracy (larger mean-squared error) over sufficiently costly
experiments. In medical studies, a pre-specified synthetic control group obtained from medi-
cal records (Jahanshahi et al., 2021; Food and Drug Administration, 2023) may be preferred
over a sufficiently expensive placebo control group, despite lack of randomization.

With manipulation, we show that it is optimal to (i) publish some unsurprising results and
(ii) knowlingly allow for manipulation (biased studies) at the margin. Observationally, the
optimal policy would reduce the bunching of the findings (e.g., t-tests) around the publication
cutoff that would be optimal if the planner naively assumed researchers do not manipulate.
However, the optimal policy does not completely remove bunching. Even when the planner
can mandate a signal to enforce no manipulation, this may not be her preferred policy when
the signal entails a large perceived burden on the researcher.

Our model disentangles the contribution of design choice and data manipulation to op-
timal publication decisions. Future research should study more complex communication
strategies. For example, in contexts with pre-analysis plans, the planner may allow multiple
signals to decrease the burden on the authors or allow for the publication of non-prespecified
findings. Similarly, researchers may report multiple findings in their study. As we point to
in our results in Section 5, studying more complex action spaces can shed light on alternative
mechanisms relevant to scientific communication.
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Future research should also study the implications of some of these conclusions on em-
pirical research. Our framework relies on parameters that capture costs and benefits for
the researcher. In the absence of manipulation, such parameters can be learned using cost
data for medical trials (e.g. Tetenov, 2016) and field experiments (e.g. Viviano et al., 2024).
With manipulation, and possible reputational costs associated with it, such parameters may
be learned using information from meta-analyses through the distribution of the submitted
findings (different form, but in the spirit of Andrews and Kasy, 2019). In this case, experi-
mentation or different norms across different journals can help to identify such parameters.
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A Omitted Proofs
We will define Φ(·) the cumulative density function of a Standard Normal Distribution and
ϕ(·) its probabiliy density function. We will use the y = O(x) notation to indicate that
y ≤ Kx for a finite constant K.

A.1 Preliminary Lemmata

The following lemma provides an approximation to a function of the cost that will be used
in the characterization of the planner’s loss function for expensive designs.

Lemma A.1. Let Λ(CE) = Φ−1(1 − CE/2)ϕ(Φ
−1(1 − CE/2)), CE > δ > 0 for a constant

δ > 0. Then Λ(CE) = 1
2
(1 − CE) + rl where |rl| ≤ Kδ ((1− CE)

3) , for a finite constant
Kδ < ∞.

Proof of Lemma A.1. The proof follows directly from a second order Taylor approximation
to Φ−1(1−CE/2) around CE = 1 (where the second order derivative equals zero) and a first
order Taylor approximation to ϕ(Φ−1(1−CE/2)) around CE = 1 (where the derivative equal
zero), and using the fact that Φ−1(1/2) = 0.

The following lemma provides a simple decomposition of the social planner’s loss function
conditional on the realized statistic X.

Lemma A.2 (Loss function). Suppose that Assumption 3.1 holds. Then

E
[
Lp(X(∆),∆, θ0)

∣∣∣X(∆)
]
=

[
cp −

η40
(S2

∆ + η20)
2
X(∆)2

]
p(X,∆) + E[θ20|X(∆)]

Proof of Lemma A.2. Recall that under Assumption 3.1, β∆ = 0. Using the fact that
E[θ0|X(∆)] = X(∆)

η20
S2
∆+η20

, and E
[
θ0|X(∆)

]
=

η20
S2
∆+η20

X(∆). We can write

E
[
Lp(X(∆),∆, θ0)

∣∣∣X,β∆

]
=

[( η20
S2
∆ + η20

)2
β2
∆ + cp −

( η20
S2
∆ + η20

(X(∆)− β∆)
)2]

p(X,∆) + E[θ2|X]

− 2
η20

S2
∆ + η20

β∆E[θ0|X(∆)]p(X,∆) + 2
η20(X(∆)− β∆)

S2
∆ + η20

η20
S2
∆ + η20

β∆p(X,∆)

=
[
cp −

( η20
S2
∆ + η20

X(∆)
)2]

p(X,∆) + E[θ20|X(∆)].

The following lemma provides an exact characterization of the social planner’s loss func-
tion for a publication rule corresponding to a threshold rule. This will then be used to
characterize the loss function for cheap designs.
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Lemma A.3 (Loss for threshold rule). Suppose that Assumption 3.1 holds. Then for any
rule p∆ = 1{ |X(∆)|√

S2
∆+η20

≥ t∆}, for given threshold t∆

E
[
Lp∆(X(∆),∆, θ0)

]
= η20 + 2Φ(−t∆)

[
cp −

η40
S2
∆ + η20

[
1 +

t∆ϕ(t∆)

(1− Φ(t∆))

]]
.

Proof of Lemma A.3. First, we write

E
[
Lp⋆∆

(X(∆),∆, θ0)|X(∆)
]
= E[θ20|X]−

(( η20
S2
∆ + η20

)2
X2 − cp

)
1
{ 1

S2
∆ + η20

X2 ≥ t2∆

}
We can write

E
[( η20

S2
∆ + η20

)2
X21

{ 1

S2
∆ + η20

X2 ≥ t2∆

}]

= E

( η20
S2
∆ + η20

)2
X2

∣∣∣ |X|√
S2
∆ + η20

≥ t∆

}
︸ ︷︷ ︸

(I)

×P

 |X|√
S2
∆ + η20

≥ t∆


︸ ︷︷ ︸

(II)

.

Recall that X ∼ N (0, η20 + S2
∆). It is easy to show that by symmetry of the Gaussian

distribution

(I) = E

[( η20
S2
∆ + η20

)2

X2
∣∣∣ X√

S2
∆ + η20

≥ t∆

]
.

Using properties of the (truncated) Gaussian distribution, we can write

(I) =
η40

S2
∆ + η20

[
1 +

t∆ϕ(t∆)

1− Φ(t∆)

]
, (II) = 2Φ(−t∆),

and the lemma follows.

The following lemma is a simple definition of p⋆∆ in Lemma 3.1.

Lemma A.4. For p⋆∆ in Equation (5), it follows that p⋆∆ = 1{ |X|√
S2
∆+η20

≥ t∆} where t∆ =(√
S2
∆+η20
η20

)√
cp −max{λ(C∆), 0}, and λ(C∆) = cp −

(
η20√

S∆+η20
Φ−1(1− C∆/2)

)2

.

Proof. The proof is immediate from rearrangement.

The following lemma provides an exact characterization of the loss planner’s loss function
in the presence of an expensive design.
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Lemma A.5 (Loss for large costs). Suppose that Assumption 3.1 holds. Suppose that
λ(C∆) > 0 as defined in Lemma A.4. Then

E[Lp⋆∆
(X(∆), S∆, θ0)] =

η20 + C∆

[
cp −

η40
S2
∆ + η20

]
− 2η40

S2
∆ + η20

Φ−1(1− C∆/2)ϕ(Φ
−1(1− C∆/2)).

Proof of Lemma A.5. The proof follows directly from Lemma A.3, noting that when λ(C∆) >

0, the constraint is binding, and C∆/2 = Φ(−t∆).

A.2 Proof of Lemma 3.1

Using Lemma A.2 and the lagrangian formulation with multiplier λ, the objective reads as∫ [
cp − λ−

( η20
S2
E + η20

x
)2]

p(x)dFX(x) + λCE

where FX = N (0, S2
E + η20), and λ ≥ 0 is the lagrangian multiplier. We can solve and

obtain pλ(x) = 1{( η20
S2+η20

x)2 ≥ cp − λ} as the minimizer of the above expression. From
complementary slackness, whenever the constraint is binding, we can write

λ :

∫
pλ(x)dFX(x) = CE,

so that (since X ∼ N (0, S2
E + η20)),

2Φ
(
−
√

cp − λ

√
S2
E + η20
η20

)
= CE ⇒ λ = cp −

( η20√
SE + η20

Φ−1(1− CE/2)
)2

.

When the constraint is not binding, λ = 0 from complementary slackness. Under Definition
3.2, an experiment is expensive when λ ≥ 0 and cheap otherwise. Our result directly follows
from simple rearrangement of pλ under these two scenarios using Lemma A.4.

A.3 Proof of Proposition 3.1

We prove (i), (ii), (iii) separately.

Proof of (i). Consider first the loss function of the expensive experiment. We approximate
this using the following lemma. The following lemma provides an approximation of the
planner’s loss in the presence of an expensive design.
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Lemma A.6 (Approximate loss for large costs). Suppose that Assumption 3.1 holds. Sup-
pose that λ(C∆) > 0, where C∆ > δ for arbitrary constant δ > 0. Then

E[Lp⋆∆
(X(∆), S∆, θ0)] = η20 + C∆

[
cp −

η40
S2
∆ + η20

]
− η40

S2
∆ + η20

(1− C∆) +O(η20(1− C∆)
3).

Proof of Lemma A.6. The lemma follows directly from Lemma A.5 and Lemma A.1.

Then by Lemmas A.4, A.6, we can write

E[Lp⋆E
(X(E), SE , θ0)] = η20 + CE

[
cp −

η40
(S2

E + η20)

]
− η40

(S2
E + η20)

(1− CE) +O(η20(1− CE)
3).

Similarly it follows for O being an expensive design. The proof completes from rearrange-
ment.

Proof of (ii). Before stating the result, we need to introduce the following lemma. The
following lemma approximates the planner’s loss function in the presence of a cheap design.

Lemma A.7 (Taylor approximation). Suppose that Assumption 3.1 holds and consider
p∆ = 1{ |X|√

S2
∆+η20

≥ t∆}, where t∆ =

√
S2
∆+η20
η20

√
cp. Then

E[Lp∆(X(∆), S∆, θ0)] = η20 + cp −
ϕ(0)

3
c3/2p

√
S2
∆ + η20
η20

− η40
S2
∆ + η20

+O(t3∆cp + η20t
4
∆).

Proof of Lemma A.7. From Lemma A.3, we can write

E[Lp∆(X(∆), S∆, θ0)] = η20 + 2Φ(−t∆)cp︸ ︷︷ ︸
(I)

− 2Φ(−t∆)
η40

S2
∆ + η20︸ ︷︷ ︸

(II)

− 2
η40

S2
∆ + η20

t∆ϕ(t∆)︸ ︷︷ ︸
(III)

.

Consider now a second order Taylor expansion to Φ(−t∆) = Φ(0)− t∆ϕ(0) +
1
2
ϕ′(0)t2∆ +

O(t3∆). Because ϕ′(0) = 0, this gives us

(I) = cp − cpt∆ϕ(0) +O(t3∆cp).

Consider now a third order Taylor expansion to Φ(−t∆) = Φ(0)−t∆ϕ(0)− 1
6
ϕ′′(0)t3∆+O(t4∆).

Using the fact that ϕ′(x) = −xϕ(x), we have ϕ′′(0) = −ϕ(0), giving us Φ(−t∆) = Φ(0) −
t∆ϕ(0) +

1
6
ϕ(0)t3∆ +O(t4∆). Therefore, we can write

(II) = 2
[1
2
− t∆ϕ(0) +

1

6
ϕ(0)t3∆

] η40
S2
∆ + η20

+O(t4∆η
2
0).
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Finally, consider a second order Taylor approximation to ϕ(t∆) = ϕ(0) − 1
2
t2∆ϕ(0) + O(t3∆).

We can write
(III) = 2

η40
S2
∆ + η20

t∆

[
ϕ(0)− 1

2
t2∆ϕ(0)

]
+O(t4∆η

2
0).

Rearranging terms we obtain

(I)− (II)− (III) = cp − cpt∆ϕ(0)−
η40

S2
∆ + η20

+
2ϕ(0)

3
t3∆

η40
S2
∆ + η20

+O(t3∆cp + t4∆η
2
0)

We now use the fact that t∆ =

√
S2
∆+η20
η20

√
cp under the assumptions stated. We obtain

cpt∆ϕ(0)−
2ϕ(0)

3
t3∆

η40
S2
∆ + η20

=
1

3
ϕ(0)c3/2p

√
S2
∆ + η20
η20

completing the proof.

For the observational study, because it is a cheap design, we invoke Lemma A.7, and
write (where tO =

√
S2
O+η20
η20

√
cp from Lemma A.4)

E[Lp⋆O
(X(O), SO, θ0)] =η20 + cp −

ϕ(0)

3
c3/2p

√
S2
O + η20

η20
− η40

S2
O + η20

+O(t3Ocp + η20t
4
O).

By dividing each expression by η20 and using the fact that S2
O is bounded by a finite constant

completes the proof.

Proof of (iii). Claim (iii) follows directly from Lemma A.3 since the loss function is
decreasing in the variance S2

∆ and for both the cost is not binding, so that t∆ =

√
S2
∆+η20
η20

√
cp

in Lemma A.3. To show this, from Lemma A.4 and following the same steps in the proof of
Lemma A.3, it is easy to show that

E[Lp⋆E
(X(O), O, θ0)] = η20 + 2Φ(−tE)

[
cp −

η20
S2
O + η20

(1 +
tEϕ(tE)

(1− Φ(tE))
)
]
.

That is, the loss for p⋆E evaluated at X(O)|θ0 ∼ N (θ0, S
2
O) is increasing in S2

O. It follows that

E[Lp⋆E
(X(O), O, θ0)]− E[Lp⋆E

(X(E), E, θ0)] < 0

if and only if S2
O < S2

E. Because E[Lp⋆E
(X(O), O, θ0)] ≥ E[Lp⋆O

(X(O), O, θ0)] by definition of
p⋆O, it follows that if S2

O < S2
E, E[Lp⋆O

(X(O), O, θ0)] − E[Lp⋆E
(X(E), E, θ0)] < 0. Using the

analog argument with S2
E < S2

O we obtain the opposite result, completing the claim.
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A.4 Proof of Theorem 1

Let X0 = X(0) denote the type of the researcher.
Note that θ0|X0 ∼ N

(
η20

η20+S2
E
X0,

S2
Eη20

S2
E+η20

)
. Hence, writing ω =

η20
η20+S2

E
the planner’s ex-

pected loss conditional on X0 if the researcher chooses a nontrivial design ∆ that has pub-
lication probability p is

(
ω2β2

∆ + cp
)
p+ ω2X2

0 (1− p) + ω2S2
E =

(
ω2(β2

∆ −X2
0 ) + cp

)
p+ ω2(X2

0 + S2
E).

Moreover, if the researcher chooses the trivial design, then the planner’s expected loss con-
ditional on X0 is ω2(X2

0 + S2
E). For 0 ≤ v ≤ 1, define

L∗(X0, v) = min
p,β∆∈[0,1]×R

∣∣p−cd|β∆|=v

{(
ω2(β2

∆ −X2
0 ) + cp

)
p
}

(10)

denote the minimum expected loss conditional on X0 generated by a nontrivial design and
publication probability that delivers utility exactly v − Ce to the researcher.

Lemma A.8. (a) If |X0| ̸= γ, then there is a unique optimizer (p̃(X0, v), β∆(X0, v)) in
(10) given by

p̃(X0, v) =


v if |X0| < γ

min

{
1,

2v+
√

v2+3c2d(X
2
0−(γ∗)2)

3

}
if |X0| > γ

and β∆(X0, v) = p̃(X0, v)− v.

(b) If |X0| > γ∗ (resp. |X0| = γ∗, |X0| < γ∗), then L∗(X0, v) is negative (resp. zero,
positive) for v > 0, and has negative (resp., zero, positive) derivative in v over (0, 1).

(c) L∗(X0, v) has negative derivative in X0 over (0, γ∗) ∪ (γ∗,∞).

Proof. Writing |β∆| = p−u−Ce

cd
, note that (10) can be written equivalently as

L∗(X0, v) = min
p∈[0,1]|p≥v

{[
ω2

(
p− v

cd

)2

− ω2X2
0 + cp

]
p

}
. (11)

Noting that γ∗ = 1
ω

√
cp, we divide into cases based on the value of |X0| to complete the proof.

• Case 1: |X0| > γ∗. In this case, we claim that for 0 < v < 1, the quantity L∗(X0; v) is
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the optimum of the relaxed problem

L∗(X0, v) = min
p∈[0,1]

{[
ω2

(
p− v

cd

)2

− ω2X2
0 + cp

]
p

}
, (12)

and moreover that all optimizers p̃(X0, v) satisfy p̃(X0, v) > v. Indeed, taking p = v

in (12), we can see that the right hand side is negative. It follows that in optimum in
(12), we must have that ω2

(
p−v
cd

)2

− ω2X2
0 + cp < 0. The first-order condition for the

optimality of p then entails that p̃(X0, v) > v, as desired.

In particular, we then have that L∗(X0; v) < 0. It also follows from first-order condition
for the optimality of p that

p̃(X0, v) = min

{
1,

2v +
√

v2 + 3c2d(X
2
0 − (γ∗)2)

3

}
.

The Envelope Theorem (Milgrom and Segal, 2002, Theorem 3) guarantees that L∗(X0; v)

is partially differentiable in v and X0, and that

∂L∗(X0, v)

∂v
=

2ω2(p∗(v)− v)p∗(v)

c2d
< 0

∂L∗(X0; v)

∂X0

= −2ω2X0p
∗(v) < 0 for X0 > 0.

• Case 2: |X0| ≤ γ∗. In this case, the objective in (11) is increasing in p on the interval
[v, 1]. The optimum is therefore achieved at p̃(X0, v) = v (uniquely for |X0| < γ),
so we have that L∗(X0, v) = [cp − ω2X2

0 ] v. For |X0| = γ∗, this function is zero. For
|X0| < γ∗, this function is positive for v > 0, has positive derivative in v, and has
negative derivative in X0 for X0 > 0.

The cases exhaust all possibilities, which completes the proof.

Let us now consider the constrained problem in which the planner must choose a publi-
cation rule that provides type X0 = γ∗ an indirect utility of u∗ ∈ [0, 1 − Ce]. The linearly
smoothed cutoff rule p∗

γ∗+ 1−Ce−u∗
cd

,cd
lies within this class, and under the planner’s preferred

equilibrium, delivers expected loss conditional on X0 of this publication rule is
ω2(X2

0 + S2
E) if |X0| ≤ γ∗ − u∗

cd

L∗(X0, u
∗ + cd(X0 − γ∗) + Ce) + ω2(X2

0 + S2
E) if γ∗ − u∗

cd
< |X0| < γ∗ + 1−Ce−u∗

cd

L∗(X0, 1) + ω2(X2
0 + S2

E) if |X0| ≥ γ∗ + 1−Ce−u∗

cd

.
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Lemma A.9. Within the class of publication rules that provide type X0 = γ∗ an indirect
utility of u∗ ∈ [0, 1− Ce], for all types X0 > 0:

(a) the linearly smoothed cutoff rule pγ∗+ 1−Ce−u∗
cd

,cd
minimizes the expected loss conditional

on X0 (under the planner’s preferred equilibrium), and

(b) any other publication rule within this class minimizes the expected loss conditional on
X0 must provide the same indirect utility to type X0 as pγ∗+ 1−Ce−u∗

cd
,cd

.

Proof. We divide into cases based on the value of X0.

• Case 1: X0 > γ∗. If type X0 obtains utility u, then type γ∗ could obtain utility at
least u − cd(X0 − γ∗) by choosing a design with the same mean as the design chosen
by X0. Hence, we must have that u− cd(X0− γ∗) ≤ u∗. Obviously, we must have that
u ≤ 1− Ce. By Lemma A.8(b) and the definition of L∗, the expected loss conditional
on X0 must be at least

L∗(X0,min
{
u∗ + cd(X0 − γ∗) + Ce, 1

})
+ ω2(X2

0 + S2
E)

with equality only if the indirect utility to X0 is min
{
u∗ + cd(X0 − γ∗) + Ce, 1

}
.

• Case 2: X0 = γ∗. By Lemma A.8(b) and the definition of L∗, the expected loss
conditional on X0 must be at least ω2(X2

0 + S2
E) = L∗(X0, u

∗ + Ce) + ω2(X2
0 + S2

E).

• Case 3: γ∗− u∗

cd
≤ X0 < γ∗. Type X0 could obtain utility at least u∗+ cd(X0− γ∗) > 0

by choosing a design with the same mean as the design chosen by γ∗. By Lemma A.8(b)
and the definition of L∗, the expected loss conditional on X0 must be at least

L∗(X0, u
∗ + cd(X0 − γ∗) + Ce) + ω2(X2

0 + S2
E),

with equality only if the indirect utility to type X0 is u∗ + cd(X0 − γ∗).

• Case 4: X0 < γ∗ − u∗

cd
. By Lemma A.8(b) and the definition of L∗, the expected loss

conditional on X0 must be at least ω2(X2
0 + S2

E), with equality only if the indirect
utility to type X0 is 0.

The cases exhaust all possibilities, which completes the proof.

To prove the first part of the theorem, note that Lemma A.9(a) implies that there exists a
utility level u∗ ∈ [0, 1−Ce] for type γ∗ such that pγ∗+ 1−Ce−u∗

cd
,cd

(under the planner’s preferred
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equilibrium) is optimal. Writing v∗ = u∗ + Ce, the expected loss of pγ∗+ 1−v∗
cd

,cd
(under the

planner’s preferred equilibrium) is

E(v∗, Ce) = EX0

[
L∗(X0,min{v∗ + cd(X0 − γ∗), 1}) 1

{
|X0| ≥ γ∗ − v∗ − Ce

cd

}]
+ η20.

Differentiating under the integral sign using Lemma A.8(b), we see that ∂E
∂v∗

∣∣
v∗=Ce

< 0 and
that ∂E

∂v∗

∣∣
v∗=1

> 0. So for pγ∗+ 1−Ce−u∗
cd

,cd
to be optimal, we must have 0 < u∗ < 1− Ce, hence

0 <
1− Ce − u∗

cd
<

1− Ce

cd
.

To prove the second part of the theorem, consider any optimal publication rule p∗ that
delivers utility level u∗ to type X0 = γ∗. By Lemma A.8(a), the publication rule p∗ (under the
planner’s preferred equilibrium) must deliver expected loss conditional on X0 equal to that
of pγ∗+ 1−Ce−u∗

cd
,cd

for almost all type X0, and pγ∗+ 1−Ce−u∗
cd

,cd
must be optimal. In particular,

we must have that 0 < u∗ < 1 − Ce. Using these consequences of optimality, we prove the
two assertions in this part separately.

• Suppose for sake of deriving a contradiction that p∗(X) ̸= pγ∗+ 1−Ce−u∗
cd

,cd
(X) for a

positive measure of X > 0 with pγ∗+ 1−Ce−u∗
cd

,cd
(X) > Ce. Then, at least one of the

following must occur.

– Case 1: p∗(X) ̸= 1 for a positive measure of X > γ∗ + 1−Ce−u∗

cd
. Then types

X0 > γ∗ + 1−Ce−u∗

cd
with p∗(X0) < 1 must obtain indirect utility less than 1−Ce,

which, by Lemma A.9(b), must lead to expected loss conditional on X0 strictly
greater than that of pγ∗+ 1−Ce−u∗

cd
,cd

—a contradiction.

– Case 2: p∗(X) ̸= u∗ + Ce + cd(X − γ∗) for a positive measure of results X ∈(
γ∗ − u∗

cd
, γ∗ + 1−Ce−u∗

cd

)
. Letting p̃(X0, v) be as defined in Lemma A.8(a), by

continuity, a positive measure of types X0 ∈
(
γ∗ − u∗

cd
, γ∗ + 1−Ce−u∗

cd

)
must satisfy

p∗
(
X0 +

p̃(X, u∗ + Ce + cd(X0 − γ∗))− u∗ − Ce

cd

)
̸= p̃(X, u∗ + Ce + cd(X0 − γ∗)).

Hence, if such types are to obtain indrect utility u∗ + cd(X0 − γ∗), they must
have publication probability different from p̃(X, u∗+Ce+ cd(X0−γ∗)), which, by
Lemma A.8(a), would also lead to expected loss conditional on X0 strictly greater
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than that of pγ∗+ 1−Ce−u∗
cd

,cd
. But Lemma A.9(b) implies for X0 ∈

(
γ∗ − u∗

cd
, γ∗ + 1−Ce−u∗

cd

)
,

to obtain expected loss conditional on X0 equal to that of pγ∗+ 1−Ce−u∗
cd

,cd
, type X0

must obtain indirect utility u∗ + cd(X0 − γ∗)—a contradiction.

• Suppose for sake of deriving a contradiction that p∗(X) > Ce for a positive measure of
X > 0 with pγ∗+ 1−Ce−u∗

cd
,cd
(X) ≤ Ce. Then types X0 ∈ (0, γ∗ − 1−u∗

cd
) with p∗(X0) > Ce

must obtain positive indirect utility, which, by Lemma A.9(b), must lead to expected
loss conditional on X0 strictly greater than that of pγ∗+ 1−Ce−u∗

cd
,cd

—a contradiction.

A.5 Proof of Proposition 4.1

In the notation of the proof of Theorem 1, let X0 ∈ (γ∗, X∗). The expected loss conditional
on X0 if type X0 chooses a nontrivial design ∆ is

(
ω2(β2

∆ −X2
0 ) + cp

)
p,

where p = cd(|β∆| − (X∗ − X0)). Lemma A.8(a) implies that there is a unique minimizer,
which satisfies β∆ > 0.

A.6 Proof of Proposition 4.2

In the notation of the proof of Theorem 1, consider the function E(v∗, Ce) on the domain
{(v∗, Ce) | 1 ≥ v∗ ≥ Ce ≥ 1 − cdγ

∗}. Differentiating E∗ using the fundamental theorem of
calculus implies that

∂E
∂Ce

= − 2

cd
L∗

(
γ∗ − v∗ − Ce

cd
, Ce

) exp
(
−

(
γ∗− v∗−Ce

cd

)2

2(S2
E+η20)

)
√

2π(S2
E + η20)

.

Lemma A.8(b) implies that L∗
(
γ∗ − v∗−Ce

cd
, Ce

)
≥ 0, and it then follows from Lemma A.8(c)

that ∂2E
∂v∗∂Ce

≤ 0. Hence, E is a submodular on {(v∗, Ce) | 1 ≥ v∗ ≥ Ce ≥ 1− cdγ
∗}, which is

a lattice. Topkis’s Theorem implies that

argmin
v∗∈[Ce,1]

E(v∗, Ce)

is increasing in the strong set order in Ce over [1 − cdγ
∗, 1]. Since E(v∗, Ce) is the expected

loss of pγ∗+ 1−v∗
cd

,cd
(under the planner’s preferred equilibrium), the proposition follows.
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A.7 Proof of Proposition 4.3

In the notation of the proof of Theorem 1, take |X0| ∈ (X∗
0 − 1−ce

cd
, γ∗

E). The expected loss
conditional on X0 if type X0 chooses a nontrivial design ∆ is

(
ω2(β2

∆ −X2
0 ) + cp

)
p,

where p = cd(|β∆| − (X∗ − X0)). Lemma A.8(a) implies that there is a unique minimizer,
which satisfies β∆ = 0. Since |X0| > 1−ce

cd
, we have p > ce, so type X0 will choose a nontrivial

design and obtain a nonzero publication probability.

A.8 Proof of Proposition 5.1

The first claim follows directly from the fact that if ∆ = E is a cheap design, p⋆E is the
minimizer of the loss function in the absence of incentive compatible constraints and where
the individual rationality constraint is not binding at the optimum (i.e., at the optimum p⋆E
is the same if ce = 0 from Lemma 3.1). On the other hand, L∗

M further imposes additional
incentive compatibility constraints. It follows that p⋆E is the minimizer of the social planner’s
expected loss function allowing for a less restrictive function class of publication rule.

For the second claim, from Theorem 1, we can write

L∗
M ≤ E

[
Lp′(X(∆⋆

p′),∆
⋆
p′ , θ0)

]
, p′(X) = 1

{
|X| ≥ γ∗

E +
1

cd

}
where p′ is a sub-optimal publication rule. It follows that under p′ all results for which
|θ0+ε| ∈ [γ∗

E, γ
∗
E+

1
cd
] are manipulated with |β∆⋆

p′
| = γ∗

E+
1
cd
−|θ0+ε|. For all |θ0+ε| < γ∗

E+
1
cd

,
|β∆⋆

p′
| = 0. As a result, we can write, after expanding the quadratic expression in the loss

function

L∗
M ≤ E

[
Lp′′(θ0 + ε, 0, θ0)

]
︸ ︷︷ ︸

(I)

+E[β2
∆⋆

p′
p′′(θ0 + ε)] + 2E[β∆⋆

p′
εp′′(θ0 + ε)]︸ ︷︷ ︸

(II)

, p′′(X) = 1 {|X| ≥ γ∗
E} .

The expression for (I) is obtained directly from Lemma A.7. For (II), we first note that
we can write with simple rearrangement, after simplifying the main terms, and using the
expression for β∆⋆

p′
= sign(θ0 + ε)

[
γ∗
E + 1

cd
− |θ0 + ε|

]
E[β∆⋆

p′
ε] = c0E[sign(θ0 + ε)ε||θ0 + ε|]p′′(|θ0 + ε|)

for a finite constant c0. It is easy to show that because θ0 is centered around zero and
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independent of ε, E[sign(θ0 + ε)ε||θ0 + ε|] = 0. For the first term in (II), we can write since
the absolute bias is bounded from above by 1/c2d

(II) ≤ 1

c2d
.

The final conclusion follows directly from the Taylor approximation to L∗
E from Lemma A.6

and rearrangement.
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