Program Evaluation with Remotely Sensed Variables

Ashesh Rambachan MIT Rahul Singh Harvard Davide Viviano Harvard

June, 2025

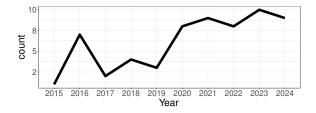
1/39

- Growing availability of experiments in social science and industry
- But... analysis often challenging due to limited access to outcomes
 Ex1 Anti-poverty programs require measuring consumption
 Ex2 Anti-deforestation/land-use programs requiring observing deforestation

2/39

- Growing availability of experiments in social science and industry
- But... analysis often challenging due to limited access to outcomes
 Ex1 Anti-poverty programs require measuring consumption
 Ex2 Anti-deforestation/land-use programs requiring observing deforestation
- Complement traditional surveys with remotely sensed variables?
 - Nightlights, satellite images, mobile phone data, noisy surveys, etc
 - Pros Cheap to collect
 - Cons Noisy and difficult to analyze

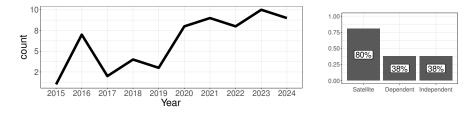
- Growing availability of experiments in social science and industry
- But... analysis often challenging due to limited access to outcomes
 Ex1 Anti-poverty programs require measuring consumption
 Ex2 Anti-deforestation/land-use programs requiring observing deforestation
- Complement traditional surveys with remotely sensed variables?
 - Nightlights, satellite images, mobile phone data, noisy surveys, etc
 - Pros Cheap to collect
 - Cons Noisy and difficult to analyze
- How (and when) should we use such data for program evaluation?



< 47 ▶

∃ ⇒

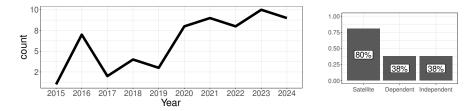
三日 のへの



→ Ξ →

三日 のへの

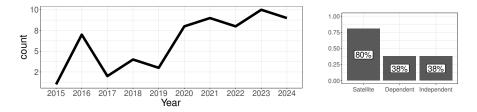
Image: A matrix and a matrix



Other examples

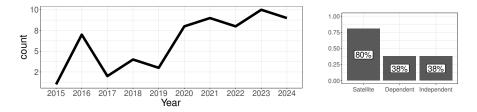
• Socioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG) (https://www.devdatalab.org/shrug)

-



Other examples

- Socioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG) (https://www.devdatalab.org/shrug)
- "Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation" (Jayachandran et al., 2017)



Other examples

- Socioeconomic High-resolution Rural-Urban Geographic Platform for India (SHRUG) (https://www.devdatalab.org/shrug)
- "Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation" (Jayachandran et al., 2017)
- "Using Satellite Imagery and Deep Learning to Evaluate the Impact of Anti-Poverty Programs" (Huang et al., 2021)
- "Estimating Impact with Surveys versus Digital Traces: Evidence fro RCTs in Togo" (Aiken et al, 2023)

- Researchers have access to obs study and experiment
 - In the obs study, researchers observe outcomes and RSV
 - In the experiment, researchers observe treatment and RSV

- Researchers have access to obs study and experiment
 - In the obs study, researchers observe outcomes and RSV
 - In the experiment, researchers observe treatment and RSV
- In this paper we focus on RSV as a post-outcome variable
 Ex luminosity changes as functions of consumption (and other factors)

4/39

- Researchers have access to obs study and experiment
 - In the obs study, researchers observe outcomes and RSV
 - In the experiment, researchers observe treatment and RSV
- In this paper we focus on RSV as a post-outcome variable Ex luminosity changes as functions of consumption (and other factors)
- Principled way for inference on treatment effects in the experiment

4/39

- Researchers have access to obs study and experiment
 - In the obs study, researchers observe outcomes and RSV
 - In the experiment, researchers observe treatment and RSV
- In this paper we focus on RSV as a post-outcome variable Ex luminosity changes as functions of consumption (and other factors)
- Principled way for inference on treatment effects in the experiment
 - Comparing predicted outcomes betw/ treated and controls has bias

- Researchers have access to obs study and experiment
 - In the obs study, researchers observe outcomes and RSV
 - In the experiment, researchers observe treatment and RSV
- In this paper we focus on RSV as a post-outcome variable Ex luminosity changes as functions of consumption (and other factors)
- Principled way for inference on treatment effects in the experiment
 - Comparing predicted outcomes betw/ treated and controls has bias
 - Provide a simple nonparametric identification result for TE
 - Estimation can use arbitrary ML algorithms without affecting inference

- Researchers have access to obs study and experiment
 - In the obs study, researchers observe outcomes and RSV
 - In the experiment, researchers observe treatment and RSV
- In this paper we focus on RSV as a post-outcome variable Ex luminosity changes as functions of consumption (and other factors)
- Principled way for inference on treatment effects in the experiment
 - Comparing predicted outcomes betw/ treated and controls has bias
 - Provide a simple nonparametric identification result for TE
 - Estimation can use arbitrary ML algorithms without affecting inference
 - Study large-scale public-policy (Smartcards) replicating results in Muralidharan et al., 2023 with satellite images

- Growing econometric literature on data fusion
 - Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006; D'Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]
 - Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with surrogates [Imbens et al., 2024; Ghassami et al., 2022]

- Growing econometric literature on data fusion
 - Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006; D'Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]
 - Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with surrogates [Imbens et al., 2024; Ghassami et al., 2022]
 - ⇒ None study a missing data problem for the outcome, with auxiliary dataset with a post-outcome variable

- Growing econometric literature on data fusion
 - Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006; D'Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]
 - Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with surrogates [Imbens et al., 2024; Ghassami et al., 2022]
 - ⇒ None study a missing data problem for the outcome, with auxiliary dataset with a post-outcome variable
- Generative models [Gentzkow, Shapiro and Taddy, 2019; Battaglia et al., 2024]

- Growing econometric literature on data fusion
 - Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006; D'Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]
 - Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with surrogates [Imbens et al., 2024; Ghassami et al., 2022]
 - ⇒ None study a missing data problem for the outcome, with auxiliary dataset with a post-outcome variable
- Generative models [Gentzkow, Shapiro and Taddy, 2019; Battaglia et al., 2024]
 - \Rightarrow here no need of correctly specified model for RSV

- Growing econometric literature on data fusion
 - Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006; D'Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]
 - Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with surrogates [Imbens et al., 2024; Ghassami et al., 2022]
 - ⇒ None study a missing data problem for the outcome, with auxiliary dataset with a post-outcome variable
- Generative models [Gentzkow, Shapiro and Taddy, 2019; Battaglia et al., 2024]
 - $\Rightarrow\,$ here no need of correctly specified model for RSV
- Measurement error and ML imputations
 - Classic ME [Hasuman, 2001; Hu, 2008; Molinari, 2008; Schennach, 2020; ...]
 - Outcome or covariates imputation [Alliott et al., 2023; Angelopoulos et al., (2023); Egami et al. (2024); Zhang et al. (2023); ...]

▲□ ▲ □ ▲ ■ ▲ ■ ■ ■ ● ● ●

- Growing econometric literature on data fusion
 - Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006; D'Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]
 - Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with surrogates [Imbens et al., 2024; Ghassami et al., 2022]
 - ⇒ None study a missing data problem for the outcome, with auxiliary dataset with a post-outcome variable
- Generative models [Gentzkow, Shapiro and Taddy, 2019; Battaglia et al., 2024]
 - \Rightarrow here no need of correctly specified model for RSV
- Measurement error and ML imputations
 - Classic ME [Hasuman, 2001; Hu, 2008; Molinari, 2008; Schennach, 2020; ...]
 - Outcome or covariates imputation [Alliott et al., 2023; Angelopoulos et al., (2023); Egami et al. (2024); Zhang et al. (2023); ...]
 - \Rightarrow Here ME problem with missing data (data fusion)

Content

Setup: remote sensed variables

- 2 Estimating treatment effects with predicted outcome
- Identification with binary outcomes
- 4 Representation learning: estimation and inference
- 5 Empirical illustration
- 6 Extensions and conclusions

Notation

- $D \in \{0,1\}$: binary treatment
- Y(1), Y(0) POs under treatment and control satisfy SUTVA
- $S \in \{e, o\}$: observation is in experiment or obs study
- *R* is the remote sensed variable (e.g., satellite images)

7/39

Notation

- $D \in \{0,1\}$: binary treatment
- Y(1), Y(0) POs under treatment and control satisfy SUTVA
- $S \in \{e, o\}$: observation is in experiment or obs study
- *R* is the remote sensed variable (e.g., satellite images)
- Researchers observe *n* independent observations

$$\left(\underbrace{Y_i \mathbb{1}\{S_i = o\}}_{i=1}, D_i, R_i, S_i\right)_{i=1}^n$$

only on obs study

June, 2025

Notation

- $D \in \{0,1\}$: binary treatment
- Y(1), Y(0) POs under treatment and control satisfy SUTVA
- $S \in \{e, o\}$: observation is in experiment or obs study
- *R* is the remote sensed variable (e.g., satellite images)
- Researchers observe *n* independent observations

$$\left(\underbrace{Y_i \mathbb{1}\{S_i = o\}}_{i=1}, D_i, R_i, S_i\right)_{i=1}^n$$

only on obs study

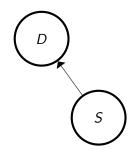
- Some extensions
 - Pre-treatment covariates X
 - Researchers observe some outcomes in the experiment

• Goal: $\theta = \mathbb{E}[Y(1) - Y(0)|S = E]$ (ATE in experiment)

< 4[™] ▶

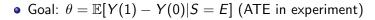
A ∃ | ∃ | ∃ | ≤ √ € ∧

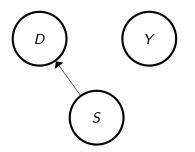
• Goal: $\theta = \mathbb{E}[Y(1) - Y(0)|S = E]$ (ATE in experiment)



< 1 k

■▶ 差|= のへの





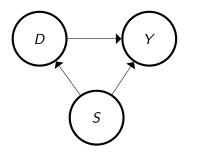
글 🖌 글 날 .

• Goal: $\theta = \mathbb{E}[Y(1) - Y(0)|S = E]$ (ATE in experiment)

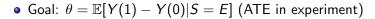


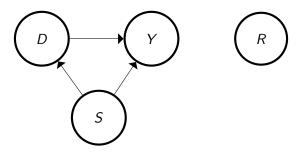
글 🕨 글 글 글 :

• Goal: $\theta = \mathbb{E}[Y(1) - Y(0)|S = E]$ (ATE in experiment)

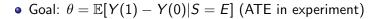


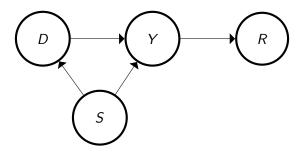
↓ ∃ | ∃ | ↓ ∩ Q ∩





글 🖒 글 날





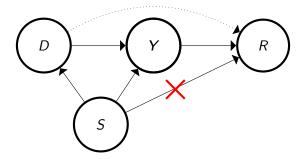
.∋...>

1.2

• Goal: $\theta = \mathbb{E}[Y(1) - Y(0)|S = E]$ (ATE in experiment)



• Goal: $\theta = \mathbb{E}[Y(1) - Y(0)|S = E]$ (ATE in experiment)



Condition 1: randomization occurs in the experiment • $D \perp (Y(1), Y(0)) | S = e$ and $P(D = 1 | S = e) \in (0, 1)$

Condition 1: randomization occurs in the experiment

•
$$D \perp (Y(1), Y(0)) | S = e$$
 and $P(D = 1 | S = e) \in (0, 1)$

Condition 2: Obs study

- Either
 - Some units are treated in obs study: $P(D = 1 | S = o) \in (0, 1)$
 - or treatment has no direct effect on RSV, $D \perp R | Y$.

Condition 1: randomization occurs in the experiment

•
$$D \perp (Y(1), Y(0)) | S = e$$
 and $P(D = 1 | S = e) \in (0, 1)$

Condition 2: Obs study

- Either
 - Some units are treated in obs study: $P(D = 1 | S = o) \in (0, 1)$
 - or treatment has no direct effect on RSV, $D \perp R | Y$.

Condition 3: Stability $S \perp R | Y, D$

- (1) Direct effect and stability are jointly testable
- (2) If you expect direct effects:
 - Collect some outcomes in the treatment group
 - Use a larger vector of outcomes in your application

- (1) Direct effect and stability are jointly testable
- (2) If you expect direct effects:
 - Collect some outcomes in the treatment group
 - Use a larger vector of outcomes in your application

Desiderata:

- (1) Estimator with infinite variance if $R \perp Y$ (cannot learn much)
- (2) Consistent estimator if $R \not\perp Y$
- (3) Do not require to know or specify $Y \rightarrow R$

- (1) Direct effect and stability are jointly testable
- (2) If you expect direct effects:
 - Collect some outcomes in the treatment group
 - Use a larger vector of outcomes in your application

Desiderata:

- (1) Estimator with infinite variance if $R \perp Y$ (cannot learn much)
- (2) Consistent estimator if $R \not\perp Y$
- (3) Do not require to know or specify $Y \rightarrow R$
 - ! Bonus: efficient choice of R

1 Setup: remote sensed variables

2 Estimating treatment effects with predicted outcome

Identification with binary outcomes

4 Representation learning: estimation and inference

5 Empirical illustration

6 Extensions and conclusions

11 / 39

• Intuitive estimator would be:

- Intuitive estimator would be:
 - Estimate $f(R) = \mathbb{E}[Y|R, S = o]$ in the observational study (assuming here no observational unit exposed to treatment)

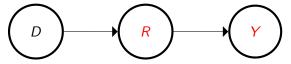
- Intuitive estimator would be:
 - Estimate $f(R) = \mathbb{E}[Y|R, S = o]$ in the observational study (assuming here no observational unit exposed to treatment)
 - Estimate ATE by taking treated/control differences relative to the prediction f(R) in the experiment:

$$\tilde{\theta} = \mathbb{E}[f(R)|D = 1, S = E] - \mathbb{E}[f(R)|D = 0, S = E]$$

- Intuitive estimator would be:
 - Estimate $f(R) = \mathbb{E}[Y|R, S = o]$ in the observational study (assuming here no observational unit exposed to treatment)
 - Estimate ATE by taking treated/control differences relative to the prediction f(R) in the experiment:

$$\tilde{\theta} = \mathbb{E}[f(R)|D = 1, S = E] - \mathbb{E}[f(R)|D = 0, S = E]$$

• Exercise mimics surrogates in data fusion lit (Athey et al., 2018)



Surrogate method is biased with RSV

Counter-argument

$$R = Y\beta + \varepsilon, \quad Y = \theta D + \eta,$$

ELE NOR

∃ ▶ .

Surrogate method is biased with RSV

• Counter-argument

$$R = Y\beta + \varepsilon, \quad Y = \theta D + \eta, \quad f(R) = R\beta^*, \quad \beta^* = rac{\operatorname{Cov}(Y, R)}{\operatorname{Var}(R)}$$

< 47 ▶

∃▶ 差|= のへの

• Counter-argument

$$R = Y\beta + \varepsilon, \quad Y = \theta D + \eta, \quad f(R) = R\beta^*, \quad \beta^* = \frac{\operatorname{Cov}(Y, R)}{\operatorname{Var}(R)}$$

Then with some algebra

$$\widetilde{ heta}=eta^{*}\Big(\mathbb{E}[{ extsf{R}}|{ extsf{D}}=1,{ extsf{S}}={ extsf{e}}]-\mathbb{E}[{ extsf{R}}|{ extsf{D}}=0,{ extsf{S}}={ extsf{e}}]\Big)$$

Counter-argument

$$R = Y\beta + \varepsilon, \quad Y = \theta D + \eta, \quad f(R) = R\beta^*, \quad \beta^* = \frac{\operatorname{Cov}(Y, R)}{\operatorname{Var}(R)}$$

Then with some algebra

$$\widetilde{ heta}=eta^*\Big(\mathbb{E}[R|D=1,S=e]-\mathbb{E}[R|D=0,S=e]\Big)=eta^*eta heta$$

 $\beta^*\beta = \frac{\operatorname{Cov}(Y,R)^2}{\operatorname{Var}(Y)\operatorname{Var}(R)}$ is squared correlation coefficient

Counter-argument

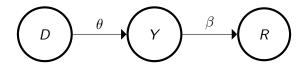
$$R = Y\beta + \varepsilon, \quad Y = \theta D + \eta, \quad f(R) = R\beta^*, \quad \beta^* = \frac{\operatorname{Cov}(Y, R)}{\operatorname{Var}(R)}$$

Then with some algebra

$$\widetilde{ heta}=eta^*\Big(\mathbb{E}[R|D=1,S=e]-\mathbb{E}[R|D=0,S=e]\Big)=eta^*eta heta$$

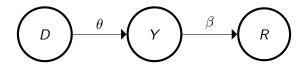
 $\beta^*\beta = \frac{\operatorname{Cov}(Y,R)^2}{\operatorname{Var}(Y)\operatorname{Var}(R)}$ is squared correlation coefficient

 \Rightarrow Bias can be significant in applications (E.g., in a cash transfer program to reduce crop burning by farmers, estimated effects using satellite images under-estimate ATE by at least 50%)

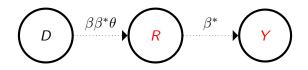


Sensed V/ June 2025 14 / 39

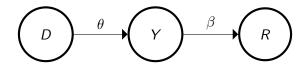
E SQA



Surrogate:

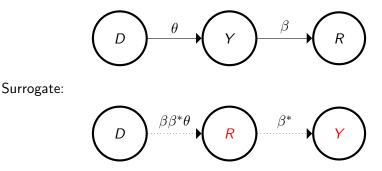


-



Surrogate:

 $\Rightarrow\,$ If $\beta=$ 0, estimated effect is a precise zero



 $\Rightarrow\,$ If $\beta=$ 0, estimated effect is a precise zero

Prop There exist at least two DGPs satisfying $(D, S) \perp R | Y$ and Conditions 1-3 hold, so that (formula)

can have arbitrary sign reversals under RSV assumptions.

- Setup: remote sensed variables
- 2 Estimating treatment effects with predicted outcome
- Identification with binary outcomes
 - 4 Representation learning: estimation and inference
- 5 Empirical illustration
- 6 Extensions and conclusions

15/39

• Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.

- Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.
- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$

- Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.
- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$
$$= \sum_{y \in \{0,1\}}$$

- Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.
- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$
$$= \sum_{y \in \{0,1\}} \underbrace{P(R = r | Y = y, D = d, S = e)}_{\text{not identified}}$$

• Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.

- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$
$$= \sum_{y \in \{0,1\}} \underbrace{P(R = r | Y = y, D = d, S = e)}_{\text{not identified}} \underbrace{P(Y(d) = y | S = e)}_{\text{estimand}}$$

- Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.
- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$
$$= \sum_{y \in \{0,1\}} \underbrace{P(R = r | Y = y, D = d, S = e)}_{\text{not identified}} \underbrace{P(Y(d) = y | S = e)}_{\text{estimand}}$$

• Now use the stability assumption (+ no direct effects)

$$P(R=r|Y=y, D=d, \mathbf{S}=\mathbf{e})$$

- Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.
- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$
$$= \sum_{y \in \{0,1\}} \underbrace{P(R = r | Y = y, D = d, S = e)}_{\text{not identified}} \underbrace{P(Y(d) = y | S = e)}_{\text{estimand}}$$

• Now use the stability assumption (+ no direct effects)

$$P(R = r | Y = y, D = d, \mathbf{S} = \mathbf{e}) = P(R = r | Y = y, \mathbf{S} = \mathbf{o})$$

- Suppose $Y \in \{0,1\}$ and no direct effects $D \perp R | Y$.
- Step one is to recognize that we identify a mixture:
 - The probability of the image depends on the prob of each PO:

$$\underbrace{P(R = r | D = d, S = e)}_{\text{we can identify}}$$
$$= \sum_{y \in \{0,1\}} \underbrace{P(R = r | Y = y, D = d, S = e)}_{\text{not identified}} \underbrace{P(Y(d) = y | S = e)}_{\text{estimand}}$$

• Now use the stability assumption (+ no direct effects)

$$P(R = r | Y = y, D = d, \mathbf{S} = \mathbf{e}) = P(R = r | Y = y, \mathbf{S} = \mathbf{o})$$

 $\Rightarrow~$ The probability of what we observe in experiment is a mixture of probabilities of what we would have observed in the obs study

EN ELE DOG

$$P(R = r | D = 1, S = e) - P(R = r | D = 0, S = e)$$

How RSV changes if we change treatment

$$P(R = r | D = 1, S = e) - P(R = r | D = 0, S = e)$$

How RSV changes if we change treatment

 $= \theta$

-

$$\underline{P(R = r | D = 1, S = e) - P(R = r | D = 0, S = e)}_{\text{How RSV changes if we change treatment}}$$
$$= \theta \left(P(R = r | Y = 1, S = o) - P(R = r | Y = 0, S = o) \right)$$

How RSV changes if we change outcome: β

$$\underbrace{P(R = r | D = 1, S = e) - P(R = r | D = 0, S = e)}_{\text{How RSV changes if we change treatment}} = \theta \underbrace{\left(P(R = r | Y = 1, S = o) - P(R = r | Y = 0, S = o)\right)}_{\text{How RSV changes if we change outcome:}\beta}.$$

$$\underbrace{P(R = r | D = 1, S = e) - P(R = r | D = 0, S = e)}_{\text{How RSV changes if we change treatment}} = \theta \underbrace{\left(P(R = r | Y = 1, S = o) - P(R = r | Y = 0, S = o)\right)}_{\text{How RSV changes if we change outcome:}\beta}.$$

 $\Rightarrow\,$ Challenge: such probabilities are difficult to predict.

• The following step is to use Bayes rule. For instance

$$P(R|D=1,S=e) = \frac{P(D=1,S=e|R)}{P(D=1,S=e)} \times$$

• The following step is to use Bayes rule. For instance

$$P(R|D = 1, S = e) = \frac{P(D = 1, S = e|R)}{P(D = 1, S = e)} \times \underbrace{P(R)}_{P(R) = 1, S = e}$$

hard to estimate

• The following step is to use Bayes rule. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{hard to estimate}}$$

• Good news is that P(R) is on both sides

$$\Big[\frac{P(D=1,S=e|R)}{P(D=1,S=e)} - \frac{P(D=0,S=e|R)}{P(D=0,S=e)}\Big]$$

How RSV changes if we change treatment

• The following step is to use Bayes rule. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{hard to estimate}}$$

• Good news is that P(R) is on both sides

$$\Big[\underbrace{\frac{P(D=1,S=e|R)}{P(D=1,S=e)}}_{P(D=0,S=e)} - \underbrace{\frac{P(D=0,S=e|R)}{P(D=0,S=e)}}_{P(D=0,S=e)}\Big] \times P(R)$$

How RSV changes if we change treatment

• The following step is to use Bayes rule. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{hard to estimate}}$$

• Good news is that P(R) is on both sides

$$\Big[\underbrace{\frac{P(D=1,S=e|R)}{P(D=1,S=e)}}_{P(D=0,S=e)} - \frac{P(D=0,S=e|R)}{P(D=0,S=e)}\Big] \times P(R)$$

How RSV changes if we change treatment

$$= \theta$$

• The following step is to use Bayes rule. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{hard to estimate}}$$

• Good news is that P(R) is on both sides

$$\left[\underbrace{\frac{P(D=1,S=e|R)}{P(D=1,S=e)} - \frac{P(D=0,S=e|R)}{P(D=0,S=e)}}_{\text{How RSV changes if we change treatment}}\right] \times P(R)$$

$$= \theta \underbrace{\left(\frac{P(Y=1,S=o|R)}{(Y=1,S=o)} - \frac{P(Y=0,S=o|R)}{P(Y=0,S=o)}\right)}_{P(Y=0,S=o)} \times P(R)$$

How RSV changes if we change outcome

1 - nan

• The following step is to use Bayes rule. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{hard to estimate}}$$

• Good news is that P(R) is on both sides

$$\begin{bmatrix} \frac{P(D=1,S=e|R)}{P(D=1,S=e)} - \frac{P(D=0,S=e|R)}{P(D=0,S=e)} \end{bmatrix} \times P(R)$$

How RSV changes if we change treatment
$$= \theta \underbrace{\left(\frac{P(Y=1,S=o|R)}{(Y=1,S=o)} - \frac{P(Y=0,S=o|R)}{P(Y=0,S=o)}\right)}_{P(Y=0,S=o)} \times P(R).$$

How RSV changes if we change outcome

• The following step is to use Bayes theorem. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{brd to estimate}}$$

hard to estimate

• Good news is that P(R) is on both sides

$$\frac{P(D=1, S=e|R)}{P(D=1, S=e)} - \frac{P(D=0, S=e|R)}{P(D=0, S=e)} \times P(R)$$

How RSV changes if we change treatment

$$=\theta\left(\underbrace{\frac{P(Y=1,S=o|R)}{(Y=1,S=o)}}_{P(Y=0,S=o)} - \frac{P(Y=0,S=o|R)}{P(Y=0,S=o)}\right) \times P(R)$$

How RSV changes if we change outcome

• The following step is to use Bayes theorem. For instance

$$P(R|D=1, S=e) = \frac{P(D=1, S=e|R)}{P(D=1, S=e)} \times \underbrace{P(R)}_{\text{hard to estimate}}$$

naru to estimate

• Good news is that P(R) is on both sides

$$\frac{P(D=1, S=e|R)}{P(D=1, S=e)} - \frac{P(D=0, S=e|R)}{P(D=0, S=e)} \times P(R)$$

How RSV changes if we change treatment

$$=\theta\left(\frac{P(Y=1,S=o|R)}{(Y=1,S=o)} - \frac{P(Y=0,S=o|R)}{P(Y=0,S=o)}\right) \times P(R).$$

How RSV changes if we change outcome

Conditional moments that do not depend on P(R)Can we circunvent correct specification of D|R, Y|R?

Write

$$\Delta_i(e) = \frac{1\{D = 1, S = e\}}{P(D = 1, S = e)} - \frac{1\{D = 0, S = e\}}{P(D = 0, S = e)}$$

and similarly $\Delta_i(o) = \frac{1\{Y=1, S=o\}}{P(Y=1, S=o)} - \frac{1\{Y=0, S=o\}}{P(Y=0, S=o)}$

三日 のへの

• Write

$$\Delta_i(e) = \frac{1\{D = 1, S = e\}}{P(D = 1, S = e)} - \frac{1\{D = 0, S = e\}}{P(D = 0, S = e)}$$
and similarly $\Delta_i(o) = \frac{1\{Y=1,S=o\}}{P(Y=1,S=o)} - \frac{1\{Y=0,S=o\}}{P(Y=0,S=o)}$

Thm (Informal) Identification simplifies to

$$\mathbb{E}[\Delta_i(e) - \theta \Delta_i(o) | R] = 0$$

 \Rightarrow No need to know data generating process for R|Y

- Take any representation of R, call it H(R) [e.g. average luminosity]
- Require that $\mathbb{E}[H(R_i)\Delta_i(o)] \neq 0 \Rightarrow$ predictive of the outcome

- Take any representation of R, call it H(R) [e.g. average luminosity]
- Require that $\mathbb{E}[H(R_i)\Delta_i(o)] \neq 0 \Rightarrow$ predictive of the outcome
- Then we can write

$$\theta = \underbrace{\mathbb{E}[H(R_i)\Delta_i(e)]}_{\times} \times$$

$$\mathbb{E}[H(R_i)\Delta_i(o)]^{-1}$$

Treatment change predicted by RSV Outcome change predicted by RSV

- Take any representation of R, call it H(R) [e.g. average luminosity]
- Require that $\mathbb{E}[H(R_i)\Delta_i(o)] \neq 0 \Rightarrow$ predictive of the outcome
- Then we can write

$$\theta = \underbrace{\mathbb{E}[H(R_i)\Delta_i(e)]}_{\text{Transmitted by DSV}} \times$$

$$\mathbb{E}[H(R_i)\Delta_i(o)]^{-1}$$

Treatment change predicted by RSV Outcome change predicted by RSV

- Intuition:
 - See how much R and D commove
 - Note that some of this is attributed to effect of Y to R
 - Appropriately divide by how much Y and R commove

- Take any representation of R, call it H(R) [e.g. average luminosity]
- Require that $\mathbb{E}[H(R_i)\Delta_i(o)] \neq 0 \Rightarrow$ predictive of the outcome

Х

Then we can write

$$\theta = \underbrace{\mathbb{E}[H(R_i)\Delta_i(e)]}_{\text{Transform}}$$

$$\mathbb{E}[H(R_i)\Delta_i(o)]^{-1}$$

Treatment change predicted by RSV Outcome change predicted by RSV

- Intuition:
 - See how much R and D commove
 - Note that some of this is attributed to effect of Y to R
 - Appropriately divide by how much Y and R commove
- Testable implication:
 - θ is constant as we vary $H(\cdot)$
 - Can change representation $H(\cdot)$ to test if estimate changes

- 1 Setup: remote sensed variables
- 2 Estimating treatment effects with predicted outcome
- Identification with binary outcomes
 - 4 Representation learning: estimation and inference
- 5 Empirical illustration
- 6 Extensions and conclusions

- How to choose H(R) to maximize precision?
 - Average luminosity, weighted luminosity, prediction of Y|R?

- How to choose H(R) to maximize precision?
 - Average luminosity, weighted luminosity, prediction of Y|R?
- Start from the conditional moment as

$$\Delta_i(e) = \theta \Delta_i(o) + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i | R_i] = 0$$

- How to choose H(R) to maximize precision?
 - Average luminosity, weighted luminosity, prediction of Y|R?
- Start from the conditional moment as

$$\Delta_i(e) = \theta \Delta_i(o) + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i | R_i] = 0$$

 Representation as an optimal instrument [Chamberlain, 1987; Newey, 1993]

$$H(R) = \frac{\mathbb{E}[\Delta_i(o)|R]}{\sigma^2(R)}, \quad \sigma^2(R) = \mathbb{E}[\varepsilon^2|R].$$

- How to choose H(R) to maximize precision?
 - Average luminosity, weighted luminosity, prediction of Y|R?
- Start from the conditional moment as

$$\Delta_i(e) = \theta \Delta_i(o) + \varepsilon_i, \quad \mathbb{E}[\varepsilon_i | R_i] = 0$$

• Representation as an optimal instrument [Chamberlain, 1987; Newey, 1993]

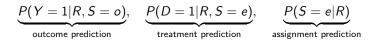
$$H(R) = rac{\mathbb{E}[\Delta_i(o)|R]}{\sigma^2(R)}, \quad \sigma^2(R) = \mathbb{E}[\varepsilon^2|R].$$

- Intuition:
 - use a function of the predicted outcome as an instrument
 - Heteroskedasticity depending on treatment and outcome predictions

EL SQA

Algorithm in a nutschell

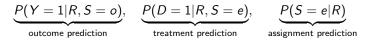
• Use a high-dim estimator with regularization to estimate



• Use these estimates to estimate $\hat{H}(R)$

Algorithm in a nutschell

• Use a high-dim estimator with regularization to estimate

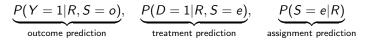


- Use these estimates to estimate $\hat{H}(R)$
- Obtain your estimated effect

$$\hat{\theta} = \frac{\mathbb{E}_n[\hat{\Delta}_i(e)\hat{H}(R_i)]}{\mathbb{E}_n[\hat{\Delta}_i(o)\hat{H}(R_i)]}$$

Algorithm in a nutschell

• Use a high-dim estimator with regularization to estimate



- Use these estimates to estimate $\hat{H}(R)$
- Obtain your estimated effect

$$\hat{\theta} = \frac{\mathbb{E}_n[\hat{\Delta}_i(e)\hat{H}(R_i)]}{\mathbb{E}_n[\hat{\Delta}_i(o)\hat{H}(R_i)]}$$

- \Rightarrow Methods of moments with estimated "optimal instrument" [e.g., Newey, 1993]:
 - standard $n^{-1/2}$ -inference if $\hat{H} \to H^*$ for some arbitrary H^* , with $\mathbb{E}[\Delta_i(o)H^*(R_i)] \neq 0$ and regularity conditions or cross-fitting

Steps for practice

Step 1: choose your target

• Choose outcomes under stability assumption (binary/discrete)

∃ ► ∃ = \000

Step 1: choose your target

• Choose outcomes under stability assumption (binary/discrete)

Step 2: training:

- Train the predictive model to predict outcomes and treatments
- Use these predictions to form optimal representation H(R)

25 / 39

Step 1: choose your target

• Choose outcomes under stability assumption (binary/discrete)

Step 2: training:

- Train the predictive model to predict outcomes and treatments
- Use these predictions to form optimal representation H(R)

Step 3: warning signs

- The correlation between H(R) and $\Delta_i(o)$ is "weak"
- Results should remain robust once we change your representation
- If we expect direct effects, need some outcomes exposed to treatment

Step 1: choose your target

• Choose outcomes under stability assumption (binary/discrete)

Step 2: training:

- Train the predictive model to predict outcomes and treatments
- Use these predictions to form optimal representation H(R)

Step 3: warning signs

- The correlation between H(R) and $\Delta_i(o)$ is "weak"
- Results should remain robust once we change your representation
- If we expect direct effects, need some outcomes exposed to treatment

Step 4: estimation and inference as for standard methods of moments

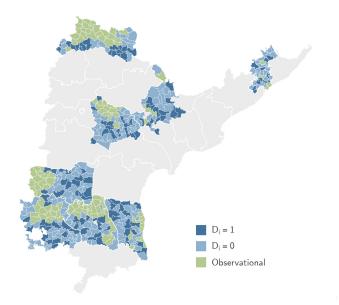
- 1 Setup: remote sensed variables
- 2 Estimating treatment effects with predicted outcome
- Identification with binary outcomes
 - 4 Representation learning: estimation and inference
- 5 Empirical illustration
 - 6 Extensions and conclusions

- Can we use remote sensed data to evaluate anti-poverty programs?
- Focus here on the Smartcards experiment [Muralidharan et al., 2016; 2023]
 - How to deliver payments securely to targeted beneficiaries?
 - Smartcards program provided biometrically authenticated payments
 - Large-scale evaluation in Indian state of Andhra Pradesh (2010-2012)

- Can we use remote sensed data to evaluate anti-poverty programs?
- Focus here on the Smartcards experiment [Muralidharan et al., 2016; 2023]
 - How to deliver payments securely to targeted beneficiaries?
 - Smartcards program provided biometrically authenticated payments
 - Large-scale evaluation in Indian state of Andhra Pradesh (2010-2012)
- Subdistricts (mandals) assigned to (more)
 - Not in the study/not randomized (105 mandals)
 - Control either buffer (136) or pure control (44)
 - Treated smartcards implemented in in 2010 (111)

- Can we use remote sensed data to evaluate anti-poverty programs?
- Focus here on the Smartcards experiment [Muralidharan et al., 2016; 2023]
 - How to deliver payments securely to targeted beneficiaries?
 - Smartcards program provided biometrically authenticated payments
 - Large-scale evaluation in Indian state of Andhra Pradesh (2010-2012)
- Subdistricts (mandals) assigned to (more)
 - Not in the study/not randomized (105 mandals)
 - Control either buffer (136) or pure control (44)
 - Treated smartcards implemented in in 2010 (111)
- Use village-level information and satellite images to estimate ITT
 - \Rightarrow We compare point estimates using limited outcome info, with regression that have access to outcome data from the experiment

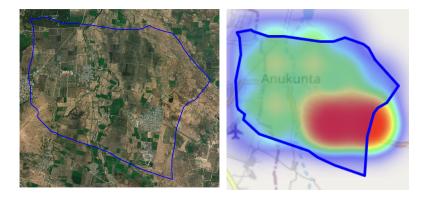
Map from the original experiment



Feature extraction (MOSAIKS features)

A 3 5 3

Feature extraction (MOSAIKS features)



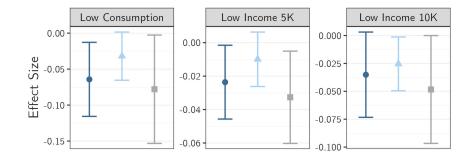
-

Metrics:

- Whether consumption is below its first quartile
- whether no individual in the village has income above Rs. 5,000
- whether no individual in the village has income above Rs 10,000
- $\Rightarrow\,$ We can observe outcome metrics for each village using census data
- $\Rightarrow\,$ Compare to regression that uses outcomes of all villages

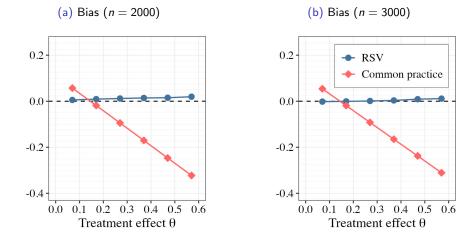
Two validation exercise implementing our method that

- Uses outcomes for first half of the experimental mandals only
- Uses outcomes of **buffer** control and **holdout** sample **only**
 - \Rightarrow Not require outcome info for \sim 3,000 villages



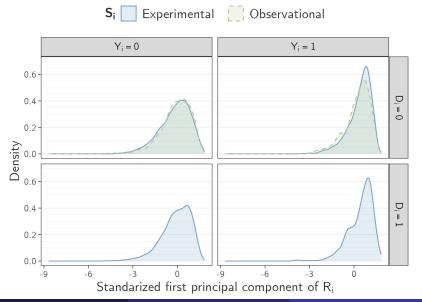
= 990

Simulations using satellites and consumption data in India



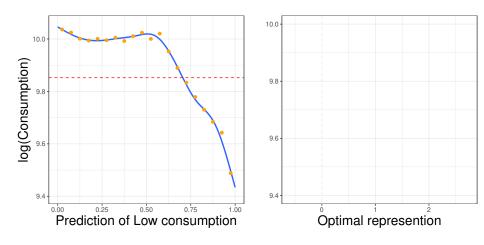
(similar behavior for mean-squared error) (more)

Checking for our assumptions using the full data



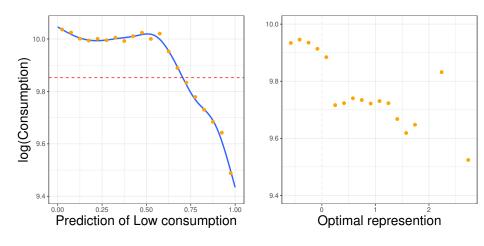
Binary outcome prediction using ML

 \Rightarrow Per-capita average consumption below 1st quartile



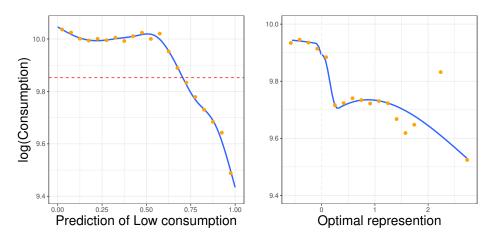
Binary outcome prediction using ML

 \Rightarrow Per-capita average consumption below 1st quartile



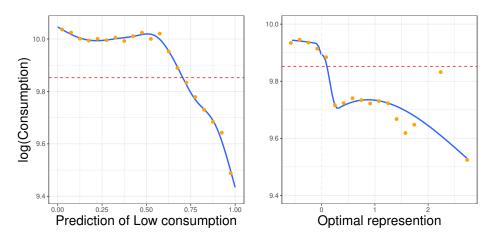
Binary outcome prediction using ML

 \Rightarrow Per-capita average consumption below 1st quartile



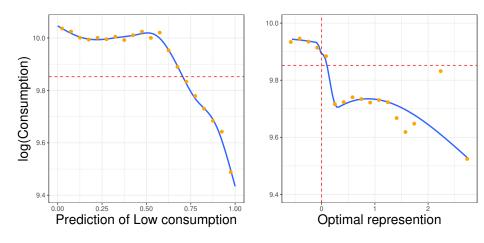
Binary outcome prediction using ML

 \Rightarrow Per-capita average consumption below 1st quartile



Binary outcome prediction using ML

 \Rightarrow Per-capita average consumption below 1st quartile



- 1 Setup: remote sensed variables
- 2 Estimating treatment effects with predicted outcome
- Identification with binary outcomes
- 4 Representation learning: estimation and inference
- 5 Empirical illustration
- 6 Extensions and conclusions

Non-binary outcomes:

• assuming no direct effects for simplicity

$$\mathbb{E}\left[\frac{1\{D=d,S=e\}}{P(D=d,S=e)} - \sum_{y\in\mathcal{Y}}\underbrace{\frac{1\{Y=y,S=o\}}{P(Y=y,S=o)}}_{\text{weight: }W_y(o)}\underbrace{\frac{P(Y(d)=y|S=e)}{estimand}}_{estimand}\Big|R\right] = 0$$

ELE SQC

Image: A matrix

Non-binary outcomes:

• assuming no direct effects for simplicity

$$\mathbb{E}\left[\frac{1\{D=d,S=e\}}{P(D=d,S=e)} - \sum_{y\in\mathcal{Y}} \underbrace{\frac{1\{Y=y,S=o\}}{P(Y=y,S=o)}}_{\text{weight: } W_y(o)} \underbrace{\frac{P(Y(d)=y|S=e)}{estimand}}_{estimand} \middle| R\right] = 0$$

 \Rightarrow H(R) of dimension $|\mathcal{Y}|$ where $\mathbb{E}[H(R)W(o)]$ is full rank (invertible)

∃ ► ∃ = \000

Non-binary outcomes:

• assuming no direct effects for simplicity

$$\mathbb{E}\left[\frac{1\{D=d,S=e\}}{P(D=d,S=e)} - \sum_{y\in\mathcal{Y}}\underbrace{\frac{1\{Y=y,S=o\}}{P(Y=y,S=o)}}_{\text{weight: }W_y(o)}\underbrace{\frac{P(Y(d)=y|S=e)}{estimand}}_{estimand}\Big|R\right] = 0$$

 \Rightarrow H(R) of dimension $|\mathcal{Y}|$ where $\mathbb{E}[H(R)W(o)]$ is full rank (invertible)

Some outcomes observed in the experiment

• Incorporate this information in the moments to improve efficiency

Non-binary outcomes:

• assuming no direct effects for simplicity

$$\mathbb{E}\left[\frac{1\{D=d,S=e\}}{P(D=d,S=e)} - \sum_{y\in\mathcal{Y}}\underbrace{\frac{1\{Y=y,S=o\}}{P(Y=y,S=o)}}_{\text{weight: }W_y(o)}\underbrace{\frac{P(Y(d)=y|S=e)}{estimand}}_{estimand}\Big|R\right] = 0$$

 \Rightarrow H(R) of dimension $|\mathcal{Y}|$ where $\mathbb{E}[H(R)W(o)]$ is full rank (invertible)

Some outcomes observed in the experiment

• Incorporate this information in the moments to improve efficiency Direct effect

• Identified if observe outcomes of some treated units (more)

Image: A matrix

- We study program evaluation with remote sensed variables
- We review pitfalls for practice and provide constructive identification
- No model specification for RSV is required and estimation/inference can use arbitrary ML algorithms
- We re-evaluate a large scale public policy program using satellite images and recover effects and SE with half of the sample

37 / 39

- We study program evaluation with remote sensed variables
- We review pitfalls for practice and provide constructive identification
- No model specification for RSV is required and estimation/inference can use arbitrary ML algorithms
- We re-evaluate a large scale public policy program using satellite images and recover effects and SE with half of the sample
- Many open questions for future research: spillover effects, high-dimensional outcomes, noisy measured treatment, ...

Thanks very much, questions?

三日 のへの

Specifically, we can write under the stated assumptions

$$\mathbb{E}[Y(d)|S = E] - \mathbb{E}[f(R)|S = E, D = d] =$$
$$\mathbb{E}[Y(d)|S = E] \cdot \int (1 - w(d, r))P(R_i = r|Y_i = 1, S_i = e)dr$$

where

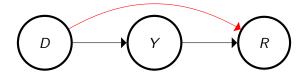
$$w(1,r) = \frac{P(Y(0) = 1|S = E)P(R = r|D = 1)}{P(Y(1) = 1|S = E)P(R = r|D = 0)}, \quad w(0,r) = \frac{1}{w(1,r)}$$

Taking differences, we obtain the bias for ATE of the form

$$\int \left((1 - w(1, r))\theta + \mu(0)(w(1, r)^{-1} - w(1, r)) \right) P(R_i = r | Y_i = 1, S_i = e) dr$$

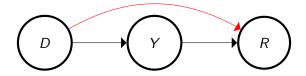
where $\mu(d) = \mathbb{E}[Y(d)|S = E]$ (back)

What if we also expect direct treatment effects?



 \Rightarrow Stability $S \perp R | Y, D$ implies stable direct effect (back)

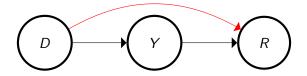
What if we also expect direct treatment effects?



⇒ Stability $S \perp R | Y, D$ implies stable direct effect (back) Thm (Informal) In the presence of direct effects

$$\mathbb{E}\Big[\Delta_i(e) - \widetilde{\Delta}_i^0(o) - heta\Big(\widetilde{\Delta}_i^1(o) - \widetilde{\Delta}_i^0(o)\Big)|R\Big] = 0$$

What if we also expect direct treatment effects?



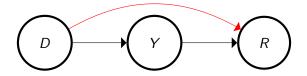
⇒ Stability $S \perp R | Y, D$ implies stable direct effect (back) Thm (Informal) In the presence of direct effects

$$\mathbb{E}\Big[\Delta_i(e) - \widetilde{\Delta}_i^0(o) - heta\Big(\widetilde{\Delta}_i^1(o) - \widetilde{\Delta}_i^0(o)\Big)|R\Big] = 0$$

where

$$\widetilde{\Delta}^{y}(o) = \frac{1\{Y = y, D = 1, S = o\}}{P(Y = y, D = 1, S = o)} - \frac{1\{Y = y, D = 0, S = o\}}{P(Y = y, D = 0, S = o)}$$

What if we also expect direct treatment effects?



⇒ Stability $S \perp R | Y, D$ implies stable direct effect (back) Thm (Informal) In the presence of direct effects

$$\mathbb{E}\Big[\Delta_i(e) - \widetilde{\Delta}_i^0(o) - \theta\Big(\widetilde{\Delta}_i^1(o) - \widetilde{\Delta}_i^0(o)\Big)|R\Big] = 0$$

where

$$\widetilde{\Delta}^{y}(o) = \frac{1\{Y = y, D = 1, S = o\}}{P(Y = y, D = 1, S = o)} - \frac{1\{Y = y, D = 0, S = o\}}{P(Y = y, D = 0, S = o)}$$

Remove contribution of direct effect

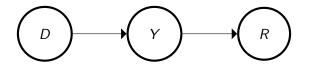
Data description: Village (Shrid) level information

- Village boundaries through SHRUG project [Asher et al., 2021]
- Village per-capita consumption and poverty level with SECC 2012 (back)
- Village level nightlights with SHRUG
- Collect village level day-light satellites [MOSAIKS, Rolf et al., 2021]

Data description: Village (Shrid) level information

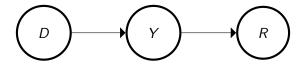
- Village boundaries through SHRUG project [Asher et al., 2021]
- Village per-capita consumption and poverty level with SECC 2012 (back)
- Village level nightlights with SHRUG
- Collect village level day-light satellites [MOSAIKS, Rolf et al., 2021]

	Outside Study	Control	Buffer Control	Treatment
Number of Shrids	2,260	853	2,931	2,276
Number mandals	105	44	136	111
Average pop	2,143	2,296	2,285	2,604
Urban area	0.002	0.001	0.003	0.004
Average male pop	0.512	0.508	0.506	0.508
Average female pop	0.489	0.492	0.495	0.493

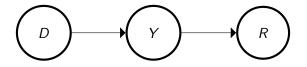


1 - 9

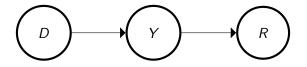
< 円H



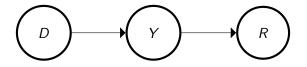
- Treatments D for n units independently
- $Y(1) \sim \operatorname{Bern}(\mathbb{E}_n[Y(1)] + \tau) (Y(0) \sim \operatorname{Bern}(\mathbb{E}_n[Y(0)] + \tau))$



- Treatments D for n units independently
- $Y(1) \sim \operatorname{Bern}(\mathbb{E}_n[Y(1)] + \tau) (Y(0) \sim \operatorname{Bern}(\mathbb{E}_n[Y(0)] + \tau))$
- Draw R(1) (R(0)) from pool of units with Y = 1 (Y = 0)

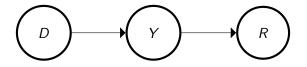


- Treatments D for n units independently
- $Y(1) \sim \operatorname{Bern}(\mathbb{E}_n[Y(1)] + \tau) (Y(0) \sim \operatorname{Bern}(\mathbb{E}_n[Y(0)] + \tau))$
- Draw R(1) (R(0)) from pool of units with Y = 1 (Y = 0)
- Observe Y = DY(1) + (1 D)Y(0),



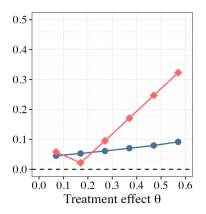
- Treatments D for n units independently
- $Y(1) \sim \operatorname{Bern}(\mathbb{E}_n[Y(1)] + \tau) (Y(0) \sim \operatorname{Bern}(\mathbb{E}_n[Y(0)] + \tau))$
- Draw R(1) (R(0)) from pool of units with Y = 1 (Y = 0)
- Observe Y = DY(1) + (1 D)Y(0), R = YR(1) + (1 Y)R(0)

38 / 39

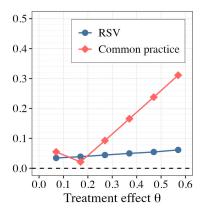


- Treatments D for n units independently
- $Y(1) \sim \operatorname{Bern}(\mathbb{E}_n[Y(1)] + \tau) (Y(0) \sim \operatorname{Bern}(\mathbb{E}_n[Y(0)] + \tau))$
- Draw R(1) (R(0)) from pool of units with Y = 1 (Y = 0)
- Observe Y = DY(1) + (1 D)Y(0), R = YR(1) + (1 Y)R(0)
- Remove outcomes info for treated (back) individuals

(a) RMSE (n = 2000)



(b) RMSE (n = 3000)



E SQA