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Problem description

Growing availability of experiments in social science and industry

But... analysis often challenging due to limited access to outcomes

Ex1 Anti-poverty programs require measuring consumption
Ex2 Anti-deforestation/land-use programs requiring observing deforestation

Complement traditional surveys with remotely sensed variables?

Nightlights, satellite images, mobile phone data, noisy surveys, etc

Pros Cheap to collect
Cons Noisy and difficult to analyze

How (and when) should we use such data for program evaluation?
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Satellite Dependent Independent

Other examples

Socioeconomic High-resolution Rural-Urban Geographic Platform for India
(SHRUG) (https://www.devdatalab.org/shrug)

“Cash for carbon: a randomized trial of payments for ecosystem services to
reduce deforestation” (Jayachandran et al., 2017)

“Using Satellite Imagery and Deep Learning to Evaluate the Impact of
Anti-Poverty Programs” (Huang et al., 2021)

“Estimating Impact with Surveys versus Digital Traces: Evidence fro RCTs
in Togo” (Aiken et al, 2023)
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This paper in one slide

Researchers have access to obs study and experiment

In the obs study, researchers observe outcomes and RSV
In the experiment, researchers observe treatment and RSV

In this paper we focus on RSV as a post-outcome variable

Ex luminosity changes as functions of consumption (and other factors)

Principled way for inference on treatment effects in the experiment

Comparing predicted outcomes betw/ treated and controls has bias

Provide a simple nonparametric identification result for TE

Estimation can use arbitrary ML algorithms without affecting inference

Study large-scale public-policy (Smartcards) replicating results in
Muralidharan et al., 2023 with satellite images
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Related literature in econometrics and statistics

Growing econometric literature on data fusion

Long and short regressions [Cross and Manski, 2002; Molinari and Peski, 2006;

D’Haultfoeuille, Gaillac and Maurel, 2024; Bareinboim and Pearl, 2016]

Surrogate literature [Athey et al., 2024; Kallus and Mao, 2022] + proxy with
surrogates [Imbens et al., 2024; Ghassami et al., 2022]

⇒ None study a missing data problem for the outcome, with auxiliary
dataset with a post-outcome variable

Generative models [Gentzkow, Shapiro and Taddy, 2019; Battaglia et al., 2024]

⇒ here no need of correctly specified model for RSV

Measurement error and ML imputations

Classic ME [Hasuman, 2001; Hu, 2008; Molinari, 2008; Schennach, 2020; ...]

Outcome or covariates imputation [Alliott et al., 2023; Angelopoulos et al.,

(2023); Egami et al. (2024); Zhang et al. (2023); ...]

⇒ Here ME problem with missing data (data fusion)
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Content

1 Setup: remote sensed variables

2 Estimating treatment effects with predicted outcome

3 Identification with binary outcomes

4 Representation learning: estimation and inference

5 Empirical illustration

6 Extensions and conclusions
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Notation

D ∈ {0, 1}: binary treatment

Y (1),Y (0) POs under treatment and control satisfy SUTVA

S ∈ {e, o}: observation is in experiment or obs study

R is the remote sensed variable (e.g., satellite images)

Researchers observe n independent observations(
Yi1{Si = o}︸ ︷︷ ︸
only on obs study

,Di ,Ri ,Si

)n

i=1

Some extensions

Pre-treatment covariates X
Researchers observe some outcomes in the experiment
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Causal model for RSV

Goal: θ = E[Y (1)− Y (0)|S = E ] (ATE in experiment)

S
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Preliminary conditions on experiment and obs/ study

Condition 1: randomization occurs in the experiment

D ⊥
(
Y (1),Y (0)

)
|S = e and P(D = 1|S = e) ∈ (0, 1)

Condition 2: Obs study

Either

Some units are treated in obs study: P(D = 1|S = o) ∈ (0, 1)
or treatment has no direct effect on RSV, D ⊥ R|Y .

Condition 3: Stability S ⊥ R|Y ,D
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Remarks and desiderata

(1) Direct effect and stability are jointly testable

(2) If you expect direct effects:

Collect some outcomes in the treatment group
Use a larger vector of outcomes in your application

Desiderata:

(1) Estimator with infinite variance if R ⊥ Y (cannot learn much)

(2) Consistent estimator if R ̸⊥ Y

(3) Do not require to know or specify Y → R

! Bonus: efficient choice of R
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Surrogate method: what we may be tempted to do

Intuitive estimator would be:

Estimate f (R) = E[Y |R,S = o] in the observational study (assuming
here no observational unit exposed to treatment)

Estimate ATE by taking treated/control differences relative to the
prediction f (R) in the experiment:

θ̃ = E[f (R)|D = 1,S = E ]− E[f (R)|D = 0,S = E ]

Exercise mimics surrogates in data fusion lit (Athey et al., 2018)

D R Y
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Surrogate method is biased with RSV

Counter-argument

R = Y β + ε, Y = θD + η,

f (R) = Rβ∗, β∗ =
Cov(Y ,R)

Var(R)

Then with some algebra

θ̃ = β∗
(
E[R|D = 1,S = e]− E[R|D = 0,S = e]

)
= β∗βθ

β∗β = Cov(Y ,R)2

Var(Y )Var(R) is squared correlation coefficient

⇒ Bias can be significant in applications (E.g., in a cash transfer program

to reduce crop burning by farmers, estimated effects using satellite images

under-estimate ATE by at least 50%)
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Surrogate method: intuition

D Y R
θ β

Surrogate:

D R Y
ββ∗θ β∗

⇒ If β = 0, estimated effect is a precise zero

Prop There exist at least two DGPs satisfying (D,S) ⊥ R|Y and
Conditions 1-3 hold, so that ( formula )

θ︸︷︷︸
estimand

− θ̃︸︷︷︸
surrogate prediction

can have arbitrary sign reversals under RSV assumptions.
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Constructive identification argument

Suppose Y ∈ {0, 1} and no direct effects D ⊥ R|Y .

Step one is to recognize that we identify a mixture:

The probability of the image depends on the prob of each PO:

P(R = r |D = d ,S = e)︸ ︷︷ ︸
we can identify

=
∑

y∈{0,1}

P(R = r |Y = y ,D = d ,S = e)︸ ︷︷ ︸
not identified

P(Y (d) = y |S = e)︸ ︷︷ ︸
estimand

Now use the stability assumption (+ no direct effects)

P(R = r |Y = y ,D = d ,S = e) = P(R = r |Y = y ,S = o)

⇒ The probability of what we observe in experiment is a mixture of
probabilities of what we would have observed in the obs study
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Identification: second step

After taking differences, we can write

P(R = r |D = 1,S = e)− P(R = r |D = 0,S = e)︸ ︷︷ ︸
How RSV changes if we change treatment

= θ
(
P(R = r |Y = 1,S = o)− P(R = r |Y = 0,S = o)

)
︸ ︷︷ ︸

How RSV changes if we change outcome:β

.

D Y R
θ β

⇒ Challenge: such probabilities are difficult to predict.
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Identification: obtaining simple moment conditions

The following step is to use Bayes rule. For instance

P(R|D = 1,S = e) =
P(D = 1,S = e|R)
P(D = 1,S = e)

×

P(R)︸ ︷︷ ︸
hard to estimate

Good news is that P(R) is on both sides[ P(D = 1,S = e|R)
P(D = 1,S = e)

− P(D = 0,S = e|R)
P(D = 0,S = e)︸ ︷︷ ︸

How RSV changes if we change treatment

]
× P(R)

= θ
(P(Y = 1,S = o|R)

(Y = 1,S = o)
− P(Y = 0,S = o|R)

P(Y = 0,S = o)

)
︸ ︷︷ ︸

How RSV changes if we change outcome

×P(R).

Conditional moments that do not depend on P(R)

Can we circunvent correct specification of D|R,Y |R?
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Identification: obtaining simple moment conditions

The following step is to use Bayes theorem. For instance
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Identification: conditional moments

Write

∆i (e) =
1{D = 1,S = e}
P(D = 1,S = e)

− 1{D = 0,S = e}
P(D = 0,S = e)

and similarly ∆i (o) =
1{Y=1,S=o}
P(Y=1,S=o) −

1{Y=0,S=o}
P(Y=0,S=o)

Thm (Informal) Identification simplifies to

E[∆i (e)− θ∆i (o)|R] = 0

⇒ No need to know data generating process for R|Y
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A simple Wald estimand

Take any representation of R, call it H(R) [e.g. average luminosity]

Require that E[H(Ri )∆i (o)] ̸= 0 ⇒ predictive of the outcome

Then we can write

θ = E[H(Ri )∆i (e)]︸ ︷︷ ︸
Treatment change predicted by RSV

× E[H(Ri )∆i (o)]
−1︸ ︷︷ ︸

Outcome change predicted by RSV

Intuition:

See how much R and D commove
Note that some of this is attributed to effect of Y to R
Appropriately divide by how much Y and R commove

Testable implication:

θ is constant as we vary H(·)
Can change representation H(·) to test if estimate changes
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Efficient representation

How to choose H(R) to maximize precision?

Average luminosity, weighted luminosity, prediction of Y |R?

Start from the conditional moment as

∆i (e) = θ∆i (o) + εi , E[εi |Ri ] = 0

Representation as an optimal instrument [Chamberlain, 1987; Newey,

1993]

H(R) =
E[∆i (o)|R]

σ2(R)
, σ2(R) = E[ε2|R].

Intuition:

use a function of the predicted outcome as an instrument
Heteroskedasticity depending on treatment and outcome predictions
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Algorithm in a nutschell

Use a high-dim estimator with regularization to estimate

P(Y = 1|R,S = o)︸ ︷︷ ︸
outcome prediction

, P(D = 1|R,S = e)︸ ︷︷ ︸
treatment prediction

, P(S = e|R)︸ ︷︷ ︸
assignment prediction

Use these estimates to estimate Ĥ(R)

Obtain your estimated effect

θ̂ =
En[∆̂i (e)Ĥ(Ri )]

En[∆̂i (o)Ĥ(Ri )]

⇒ Methods of moments with estimated “optimal instrument” [e.g.,
Newey, 1993]:

standard n−1/2-inference if Ĥ → H∗ for some arbitrary H∗, with
E[∆i (o)H

∗(Ri )] ̸= 0 and regularity conditions or cross-fitting
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Steps for practice

Step 1: choose your target

Choose outcomes under stability assumption (binary/discrete)

Step 2: training:

Train the predictive model to predict outcomes and treatments

Use these predictions to form optimal representation H(R)

Step 3: warning signs

The correlation between H(R) and ∆i (o) is “weak”

Results should remain robust once we change your representation

If we expect direct effects, need some outcomes exposed to treatment

Step 4: estimation and inference as for standard methods of moments
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Experimental background

Can we use remote sensed data to evaluate anti-poverty programs?

Focus here on the Smartcards experiment [Muralidharan et al., 2016; 2023]

How to deliver payments securely to targeted beneficiaries?
Smartcards program provided biometrically authenticated payments
Large-scale evaluation in Indian state of Andhra Pradesh (2010-2012)

Subdistricts (mandals) assigned to ( more )

Not in the study/not randomized (105 mandals)
Control – either buffer (136) or pure control (44)
Treated – smartcards implemented in in 2010 (111)

Use village-level information and satellite images to estimate ITT

⇒ We compare point estimates using limited outcome info, with
regression that have access to outcome data from the experiment
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Map from the original experiment
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Feature extraction (MOSAIKS features)
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Validation exercise

Metrics:

Whether consumption is below its first quartile

whether no individual in the village has income above Rs. 5,000

whether no individual in the village has income above Rs 10,000

⇒ We can observe outcome metrics for each village using census data

⇒ Compare to regression that uses outcomes of all villages

Two validation exercise implementing our method that

Uses outcomes for first half of the experimental mandals only

Uses outcomes of buffer control and holdout sample only
⇒ Not require outcome info for ∼ 3,000 villages

Program Evaluation with Remotely Sensed Variables June, 2025 30 / 39



Results
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Simulations using satellites and consumption data in India

(a) Bias (n = 2000) (b) Bias (n = 3000)

(similar behavior for mean-squared error) ( more )
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Checking for our assumptions using the full data
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Binary outcome prediction using ML

⇒ Per-capita average consumption below 1st quartile

9.4

9.6

9.8

10.0

0.00 0.25 0.50 0.75 1.00

Prediction of Low consumption

lo
g
(C

o
n
s
u
m

p
ti
o
n
)

9.4

9.6

9.8

10.0

0 1 2

Optimal represention

Program Evaluation with Remotely Sensed Variables June, 2025 34 / 39



Binary outcome prediction using ML

⇒ Per-capita average consumption below 1st quartile

9.4

9.6

9.8

10.0

0.00 0.25 0.50 0.75 1.00

Prediction of Low consumption

lo
g
(C

o
n
s
u
m

p
ti
o
n
)

9.4

9.6

9.8

10.0

0 1 2

Optimal represention

Program Evaluation with Remotely Sensed Variables June, 2025 34 / 39



Binary outcome prediction using ML

⇒ Per-capita average consumption below 1st quartile

9.4

9.6

9.8

10.0

0.00 0.25 0.50 0.75 1.00

Prediction of Low consumption

lo
g
(C

o
n
s
u
m

p
ti
o
n
)

9.4

9.6

9.8

10.0

0 1 2

Optimal represention

Program Evaluation with Remotely Sensed Variables June, 2025 34 / 39



Binary outcome prediction using ML

⇒ Per-capita average consumption below 1st quartile

9.4

9.6

9.8

10.0

0.00 0.25 0.50 0.75 1.00

Prediction of Low consumption

lo
g
(C

o
n
s
u
m

p
ti
o
n
)

9.4

9.6

9.8

10.0

0 1 2

Optimal represention

Program Evaluation with Remotely Sensed Variables June, 2025 34 / 39



Binary outcome prediction using ML

⇒ Per-capita average consumption below 1st quartile

9.4

9.6

9.8

10.0

0.00 0.25 0.50 0.75 1.00

Prediction of Low consumption

lo
g
(C

o
n
s
u
m

p
ti
o
n
)

9.4

9.6

9.8

10.0

0 1 2

Optimal represention

Program Evaluation with Remotely Sensed Variables June, 2025 34 / 39



Content

1 Setup: remote sensed variables

2 Estimating treatment effects with predicted outcome

3 Identification with binary outcomes

4 Representation learning: estimation and inference

5 Empirical illustration

6 Extensions and conclusions

Program Evaluation with Remotely Sensed Variables June, 2025 35 / 39



Some extensions

Non-binary outcomes:

assuming no direct effects for simplicity

E

1{D = d ,S = e}
P(D = d ,S = e)

−
∑
y∈Y

1{Y = y ,S = o}
P(Y = y ,S = o)︸ ︷︷ ︸

weight: Wy (o)

P(Y (d) = y |S = e)︸ ︷︷ ︸
estimand

∣∣∣R
 = 0

⇒ H(R) of dimension |Y| where E[H(R)W (o)] is full rank (invertible)

Some outcomes observed in the experiment

Incorporate this information in the moments to improve efficiency

Direct effect

Identified if observe outcomes of some treated units ( more )
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Conclusions

We study program evaluation with remote sensed variables

We review pitfalls for practice and provide constructive identification

No model specification for RSV is required and estimation/inference
can use arbitrary ML algorithms

We re-evaluate a large scale public policy program using satellite
images and recover effects and SE with half of the sample

Many open questions for future research: spillover effects,
high-dimensional outcomes, noisy measured treatment, ...
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Thanks very much, questions?
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Exact formula for bias of the surrogate

Specifically, we can write under the stated assumptions

E[Y (d)|S = E ]− E[f (R)|S = E ,D = d ] =

E[Y (d)|S = E ] ·
∫

(1− w(d , r))P(Ri = r |Yi = 1,Si = e)dr

where

w(1, r) =
P(Y (0) = 1|S = E )P(R = r |D = 1)

P(Y (1) = 1|S = E )P(R = r |D = 0)
, w(0, r) =

1

w(1, r)

Taking differences, we obtain the bias for ATE of the form∫ (
(1−w(1, r))θ+µ(0)(w(1, r)−1−w(1, r))

)
P(Ri = r |Yi = 1, Si = e)dr

where µ(d) = E[Y (d)|S = E ] ( back )
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Estimation with direct effects

What if we also expect direct treatment effects?

D Y R

⇒ Stability S ⊥ R|Y ,D implies stable direct effect ( back )

Thm (Informal) In the presence of direct effects

E
[
∆i (e)− ∆̃0

i (o)− θ
(
∆̃1

i (o)− ∆̃0
i (o)

)
|R

]
= 0

where

∆̃y (o) =
1{Y = y ,D = 1,S = o}
P(Y = y ,D = 1,S = o)

− 1{Y = y ,D = 0,S = o}
P(Y = y ,D = 0,S = o)

⇒ Remove contribution of direct effect
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Data description: Village (Shrid) level information

Village boundaries through SHRUG project [Asher et al., 2021]

Village per-capita consumption and poverty level with SECC 2012
( back )

Village level nightlights with SHRUG

Collect village level day-light satellites [MOSAIKS, Rolf et al., 2021]

Outside Study Control Buffer Control Treatment

Number of Shrids 2, 260 853 2, 931 2, 276
Number mandals 105 44 136 111
Average pop 2, 143 2, 296 2, 285 2, 604
Urban area 0.002 0.001 0.003 0.004

Average male pop 0.512 0.508 0.506 0.508
Average female pop 0.489 0.492 0.495 0.493
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Calibrated simulations. Draw

D Y R

Treatments D for n units independently

Y (1) ∼ Bern(En[Y (1)] + τ) (Y (0) ∼ Bern(En[Y (0)] + τ))

Draw R(1) (R(0)) from pool of units with Y = 1 (Y = 0)

Observe Y = DY (1) + (1− D)Y (0),R = YR(1) + (1− Y )R(0)

Remove outcomes info for treated ( back ) individuals
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Calibrated simulations: Surrogate vs RSV Method (RMSE)

(a) RMSE (n = 2000) (b) RMSE (n = 3000)
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