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Two Examples

Ex1 “Effect of negative advertisement on election outcome?” (Blackwell,
2013)
e Dynamic choice of which advertisement to send;
e Politicians may make strategic choices based on past polls.

Ex2 “What is the effect of democracy on economic growth?” (Acemoglu
et al., 2019)
e Hard question.
e Long and short term impacts may be different;
e Past growth may determine the selection into treatment;
e It is necessary to control for many potential confounders.
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Inference on Treatment Histories

Suppose we collect data from an observational study with T periods and n
individuals.

Goal: Inference on the effect of a treatment history.
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nce on Treatment Histories

Suppose we collect data from an observational study with T periods and n
individuals.

Goal: Inference on the effect of a treatment history.

Challenges:
@ Individuals select dynamically on arbitrary past information;
@ Selection mechanism (propensity score) hard to estimate/unknown;

@ Intermediate covariates and outcomes depend on past treatment
assignments;

@ Many potential confounders (high-dimensional covariates).
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@ Dynamic effects: problem description and overview
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Data and Notation

Ex-post evaluation:

@ Collect data from T periods, then conduct inference.

Davide Viviano (Stanford GSB) July 26, 2023



Data and Notation

Ex-post evaluation:

@ Collect data from T periods, then conduct inference.

Data:
n
(Xi,1,Xi,2, Y Yir, Dig, e ,Di,T)izl ~iid. P
@ Xi: € X; - time-varying covariates;
@ Yi; €Y - intermediate outcomes;
e Dj: € {0,1} - dynamic treatments;
= Potential outcomes: Yj¢(d1,- -, dt).
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Data and Notation

Ex-post evaluation:

@ Collect data from T periods, then conduct inference.

Data:

n
(Xi,1,Xi,2, o Yi, o Yir, Dig, e ,Di,T), | i, P
=
@ Xi: € X; - time-varying covariates;
@ Yi; €Y - intermediate outcomes;
e Dj: € {0,1} - dynamic treatments;
= Potential outcomes: Yj¢(d1,- -, dt).

Goal

@ Inference on treatment effects at time T.
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[llustration: Two Periods

(X1, D1) (Y1, X2, D) Y,

t=1 t=2 t=3
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[llustration: Two Periods

(XlaDl) (Y17X27D2) Y2

Dynamic model:
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[llustration: Two Periods

(X1, D1) (Y1, X2, Do) Y,

ang
L
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[llustration: Two Periods

(X1, D1) (Y1, X2, Do) Y2

Dynamic model: n@

Goal Inference on E[Yg(l,O) — Y2(0,0)| (or conditional on baselines).
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[llustration: Two Periods

(X1, D1) (Y1, X2, Do) Y2

Dynamic model: G

Goal Inference on E[Yg(l, 1) — Y2(0,0)| (or conditional on baselines).
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Goal Inference on E[Yg(l, 1) — Y2(O,O)}.
Data:

i

i

i3

i (Yl(O),Xg(O), Y»(0, 0))?;

i (yl(l),x2(1), Y»(0,0), Ya(1, 1))?;
i
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Goal Inference on E[Yg(l, 1) — Yg(0,0)}.
Data:

i [(Y1, X2)(1)| Yo(1,1)

i

i3

i

i (Yl(O),Xz(O), Y5 (0, 0))?;
(v1(1),x2(1), ¥»(0,0), Ya(1, 1))?;
i

Davide Viviano (Stanford GSB) July 26, 2023 18 /54



Goal Inference on E[Yg(l, 1) — YQ(O,O)}.
Data:

i (Y, %)(1) Ya(1,1)

i |(Y1,X2)(0)| Y¥2(1,0)

i3 (Yl,X2)(0) Y2(0,0)

i (Yl(O),Xz(O), Y»(0, 0))?;

i> (Yl(l),Xz(l), Y»(0,0), Ya(1, 1))?;
i
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Goal Inference on E[Yg(l, 1) — YQ(O,O)}.

Data:

ao (Y, X2)(1)] Y2(1,1)
ik |(Y1,X2)(0)| Ya(1,0)
i3 (Yl,X2)(0) Y2(0,0)

i (Yl(O),Xz(O), Y»(0, 0))?;

o IPW?

@ Estimate each counterfactual?

i> (Yl(l),Xz(l), Y»(0,0), Ya(1, 1))?;

i
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Goal Inference on E[Yg(l, 1) — YQ(O,O)}.

Data:
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i3 (Y1, X2)(0)| Y2(0,0)

i (Yl(O),Xz(O), Y»(0, 0))?;
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@ Estimate each counterfactual?
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Goal Inference on E[Yg(l, 1) — YQ(O,O)}.

Data:

i

i

i3

i

(Y1, X2)(1)| Yo(1,1)
(Y1, X2)(0)| Ya(1,0)
(Y1,X2)(0)| Y2(0,0)

’\\).
/N N

¥1(0), X2(0), Y»(0, 0))?;

o IPW?

@ Estimate each counterfactual?

Y1(1), Xa(1), Y2(0,0), Ya(1, 1))?;
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Review: some intuitive estimators

1. Regress end-line outcomes on covariates:

T-1 T-1
YiT= Z a:Djt + X ¢t + Z Yithr +€iT.
t=0 t=1

D; +—1 also affects Y;; = we main underestimate the overall effect.
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Review: some intuitive estimators

2. Regress end-line outcomes and exclude the outcomes:

T-1

YiT = Z atDjs +Xi18+¢€i 1.
=0
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Review: some intuitive estimators

2. Regress end-line outcomes and exclude the outcomes:

T-1

YiT = Z atDjs +Xi18+¢€i 1.
=0

= omitted variable bias.

)
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Review: some intuitive estimators

3. Run separate regressions for

Yie = Xit—1Bt+Dj—10eteis,  Xip = Xit—1Pt—1+Dj 10t _1+€xit-
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Review: some intuitive estimators

3. Run separate regressions for
Yie = Xit—1Bt+Dj—10eteis,  Xip = Xit—1Pt—1+Dj 10t _1+€xit-

Prone to large estimation error in high dimensions.

-
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Review: some intuitive estimators

4. Local projections (Jorda, 2005)

T—h

YiT= Z ar hDit + XitBen + Yieben + i1
=0
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Review: some intuitive estimators

4. Local projections (Jorda, 2005)

T—h

YiT = Z ar hDit + XitBen + Yieben + i1
=0

o p targets a different estimand!

)

Davide Viviano (Stanford GSB) July 26, 2023 27 /54



Review: some intuitive estimators

4. Local projections (Jorda, 2005)

T—h
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Dynamic Covariate Balancing

Method
1. Model on potential outcomes with “potential” local projections:

= It does not require to estimate each counterfactual (“adapt” local
projections of Jorda (2005) to dynamic treatments);
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Dynamic Covariate Balancing

Method

1. Model on potential outcomes with “potential” local projections:
= It does not require to estimate each counterfactual (“adapt” local
projections of Jorda (2005) to dynamic treatments);
2. Estimation balances covariates directly (dynamically)

= It does not require to specify and estimate the propensity score;

= |t guarantees an asymptotic vanishing bias in high dimensions;

= More stable than (A)IPW estimators in the presence of poor overlap;
= Generalizes Zubizarreta (2015) and Athey et al. (2018) to dynamics.
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Dynamic Covariate Balancing

Method

1. Model on potential outcomes with “potential” local projections:

= It does not require to estimate each counterfactual (“adapt” local
projections of Jorda (2005) to dynamic treatments);

2. Estimation balances covariates directly (dynamically)
= It does not require to specify and estimate the propensity score;
= |t guarantees an asymptotic vanishing bias in high dimensions;
= More stable than (A)IPW estimators in the presence of poor overlap;
= Generalizes Zubizarreta (2015) and Athey et al. (2018) to dynamics.
Conditions:
1. Sequential ignorability:

= Treatments are assigned sequentially based on past observations and
exogenous unobservables.

2. Approximate linearity:
= Linearity of outcomes on past outcomes and high-dimensional
covariates.
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Related Literature

@ Dynamic Treatments’ literature and marginal structural models [E.g.,
Robins, 1986, Robins et al., 2000, Bang and Robins 2005, Boruvka et al., 2018; Blackwell,
2013; Bojinov and Shephard 2019; Lewis and Syrgkanis, 2020; Bodory et al. 2020 ]

e Balancing and Dynamic Treatments: [Imai and Ratkovic (2005); Yiu and Su
(2018); Kallus and Santacatterina (2018), Zhou and Wodtke (2018) ]
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= None studies (approximate) residual balancing in dynamic settings.
= We characterize the (high-dimensional) bias and balancing equations.
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Related Literature

@ Dynamic Treatments’ literature and marginal structural models [E.g.,
Robins, 1986, Robins et al., 2000, Bang and Robins 2005, Boruvka et al., 2018; Blackwell,
2013; Bojinov and Shephard 2019; Lewis and Syrgkanis, 2020; Bodory et al. 2020 ]

e Balancing and Dynamic Treatments: [Imai and Ratkovic (2005); Yiu and Su
(2018); Kallus and Santacatterina (2018), Zhou and Wodtke (2018) ]

= None studies (approximate) residual balancing in dynamic settings.
= We characterize the (high-dimensional) bias and balancing equations.

e Estimation and inference in time-series/(macro)econometrics [Jorda,
2005; Stock and Watson, 2018, Angrist et al. (2018); Rambachan and Shephard (2019)]

= Exogeneity and independence of shocks (treatments).

e Balancing in i.i.d. settings [E.g., Zubizarreta (2015); Athey et al. (2018) |;
difference-in-differences, synthetic controls, panel data [E.g., Ben-Michael
et al.; Athey and Imbens (2022)); Arkhangelsky and Imbens (2019); ... ]

= Here estimation and inference under sequential exogeneity.
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© Estimation and inference
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Basic Model: Example

Basic model that we generalize in the following slides:
Yio= [Yi,l,Xi,l, D; 1, Di,2] Bo+c€iz, €ipl Di,Z‘Di,LXi,la Yi1

Yii= [Xi,h Di,1]ﬁ1 + €1, (ein,€i2) L Di,l’Xi,l-
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Basic Model: Example

Basic model that we generalize in the following slides:
Yio= [Yi,l,Xi,l, Di1, Di,2] Bo+ceia, €inl Di,z‘Di,hXi,l, Yi1
Yii= [Xi,h Di,1]ﬁ1 +€i1, (€i1,€i2) L Di,l’Xi,l-
We can write
Yia(di, do) = [Yi,l(dl),Xi,ly di, dz] B2 +¢€i2

Yii(di) = [Xi,l, dl}ﬁl +ein
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Basic Model: Example

Basic model that we generalize in the following slides:
Yio= [Yi,l,Xi,l, Diq, Di,2] Bo+ceia, €inl Di,z‘Di,hXi,l, Yi1
Yii= [Xi,h Di,1]ﬁ1 +€i1, (€i1,€i2) L Di,l’Xi,l-
We can write
Yia(di, do) = [Yi,l(dl),Xi,ly di, dz] B2 +¢€i2

Yii(di) = [Xi,l, dl}ﬁl +ein

= Yio(dy, d2) is linear in X;1 unconditionally on Y;1(d1):

Via(dy, o) = |11, X1 | Bar.p + /5%, B[

Xi1, D,-71] —0.
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Example: lllustration

@ Model on potential outcomes: linear dependencies?

)
.
-

@ Remaining components are left unspecified.
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Basic Model: Example

Recall the starting model:
Yio = [Yi,l,xi,l, Di1, Di,2] B2 +eip, €ipL Di,Z‘Di,hXi,la Yi1

Yii1= [Xi,b Di,1]ﬁ1 +ei1, (€i1,ei2) L Di,l’Xi,l-

= Why not a linear model on observed outcomes?
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Basic Model: Example

Recall the starting model:
Yio = [Yi,hxi,la Di1, Di,2] B2 +eip, €ipL Di,2‘Di,17Xi,la Yi1

Yii1= [Xi,b Di,1]ﬁ1 +ei1, (€i1,ei2) L Di,l’Xi,l-

= Why not a linear model on observed outcomes?

E[Y;,z)xi,b Di,1} = [Xi,l, Di,lb + 52E[Di,2|xi,1’ Di,l}

problematic

= Model on the observed outcomes also depend on (Xi, D1) — Do;

= Model on potential outcomes is more flexible.

Davide Viviano (Stanford GSB) July 26, 2023 34 /54



Model Specification: General Case

Define Hi o(d1) = [X,-,l,x,-g(dl), Y,-,l(dl)} (also with intercepts).

]E{Yig(dl, dz)‘Hi,z, Diy = d1} = Hi,2(d1)5¢211,d2=

E[Yi,Z(dl, d>) Xi,l} = Xi.184,,d,

Davide Viviano (Stanford GSB) July 26, 2023



Model Specification: General Case

Define Hi o(d1) = [X,-,l,x,-g(dl), Y,-,l(dl)} (also with intercepts).

E[Yi,2(dl7 dz)‘Hi,z, Diy = dl} = Hi2(ch) 53, o,
E[Yi,Z(dl, d2)‘Xi,1} = Xi.184,,d,
o It holds if H;2(dh) is linear in X 1;

@ It does not impose structural assumptions on (D; 1, D; 2);

@ High dimensional model can be interpreted as approximate linearity
(up-to small estimation error)
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Model Specification: General Case

Define Hi o(d1) = [X,-,l,x,-g(dl), Y,-,l(dl)} (also with intercepts).

]E{Yig(dl, dz)‘Hi,z, Diy = d1} = Hi,2(d1)ﬁc211,d27

IE[YiQ(dl, dz)‘Xi,l} = X183,

o It holds if H;o(d1) is linear in Xi 1;
@ It does not impose structural assumptions on (D; 1, D; 2);

@ High dimensional model can be interpreted as approximate linearity
(up-to small estimation error)

Sequential ignorability:

Yia(di,do) L Di,2)Hi,2, Di1, (Yi,2(d17 do), Hi,1(d1)> L Di,l’Xi,L

Davide Viviano (Stanford GSB) July 26, 2023 35/54



Identification and Estimation of the Linear model

L E[Yia|Xia, Dix = 1,Di0 = 1] # E[Yia(1,1)|X4]
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Identification and Estimation of the Linear model

L E[Yia|Xia, Dix = 1,Di0 = 1] # E[Yia(1,1)|X4]

Identification

E[E[Yig‘Hi,m Diy=d1,Dip = d2} )Xi,la Diy = dl] = E[Yi,Z(dla d2)’Xi,1]-

=E[Y] 2(d1,d2)|H;2,D; 1=dh]
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Identification and Estimation of the Linear model

UE[Yia|Xia, Dia = 1, Di2 = 1] £ E[Yia(1,1)[X4]

Identification

E[E[Yig‘Hi,m Diy=d1,Dip = d2} ’Xi,la Diy = dl] = E[Yi,2(d1> d2)’Xi,1]-

=E[Y]2(d1,d2)|Hi2,Di,1=ch]
Coefficients’ Estimation (with Lasso):
Y2 = [Xz,Xl, Dy =di,Dr = dz} — Haf33, 4,

HoBe.ap — [Xla Dy = dl} - Xchlh,dz
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Identification and Estimation of the Linear model

UE[Yia|Xia, Dia = 1, Di2 = 1] £ E[Yia(1,1)[X4]

Identification

E[E[Yig‘Hi,z, Diy=d1,Dip = d2} ’Xi,la Diy = dl] = E[Yi,2(d1> d2)’Xi,1]-

=E[Y] 2(d1,d2)|H;2,D; 1=dh]

Coefficients’ Estimation (with Lasso):
Y2 = [Xz,Xl, Dy =di,Dr = dz} — Haf33, 4,

HoBe.ap — [Xla Dy = dl} - Xchlh,dz

@ Problem: bias due to high-dimensionality;

e Unknown propensity score: (a)lPW can be prone to misspecification
and poor overlap
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Balancing: Illustration

Estimating E[Y2(1, 1)]: D1 D — 0
2 = 2 =

D=1

Dy

Il
o

Balancing conditions:

o H)?l—’AYIXlH <0n, A2
o0

’?2TH2—’?1TH2H < dn
o0
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Balancing: Illustration

Estimating E[Y2(1, 1)]: D1 D — 0
2 = 2 =

D=1

Dy

1
o
)
=
1
o
-2
=
Il
o

Balancing conditions:
’AYliH)_Q—’AhTXlH < On, ’AYziH’AYzTHz—’%THzH < 0n
o0 o0
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Balancing: Illustration

Estimating E[Y2(1, 1)]: D1 D — 0
2 = 2 =

D=1 M M

Dy

1
o
)
=
1
o
-2
=
Il
o

Balancing conditions:
’AYliH)_Q—’AhTXlH < On, ’AYziH’AYzTHz—’%THzH < 0n
o0 o0
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Balancing: Illustration

Estimating E[Y>(1,1)]: D1 D — 0
h = b =

Balancing conditions:

M H)_ﬁ—%TXlH <0n A2
oo

93 Ho = 4] Ho||_ <4,
o0
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Balancing: Illustration

Estimating E[Y2(1, 1)]: D1 D — 0
2 = 2 =

Dy =1 4 =0

Dy

1
o
)
N
1
o
I
Il
o

Balancing conditions:

’AYliH)_Q—’AhTXlH < dp, ’AYziH’AYzTHz—’%THzH < dn
o0 o0
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Balancing: Illustration

Estimating E[Y2(1, 1)]: D1 D — 0
> = > =

Ho

D=1 A2 A =0

Dy

Il
o
N

Il
o
2
N

Il

o

Balancing conditions:

’AYliH)_Q—’AhTXlH < dp, ’AYziH’AYzTHz—’AYlTqu < dn
o0 o0
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= Balancing to guarantee neglegible (o,(1/1/n)) estimation error;

= It does not require the specification (and estimation) of the
propensity score.

Two periods: fi11 = %T (Y2 — H2Bi1) +71T (H2BA%,1 - XlBil) +)_<15A:1[,1
~——— ~——

Y>—Pred?2 Pred2—Pred1 Estl
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= Balancing to guarantee neglegible (o,(1/1/n)) estimation error;

= It does not require the specification (and estimation) of the
propensity score.

Two periods: fiz1 =4, (Y2 — Haf31) +91 (HaB2 1 — X1B11) + XuBi 4
N—_——— N——

Y>—Pred?2 Pred2—Pred1 Estl

Step t (Sequential)

Ae = argmin,, || 7|

n n
H E i e—1Hir — E ¥i,eHi ¢
i—1 =i

7ello < log(n)n™2/3, 0 < ;e < H 1{D;s = ds}
s=1

<5”P Z’Y:t—l
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Rationale

For any 41, and 42, where ;> = 0 if (D; 1, Di2) # (1,1), we have

AL 1) - (1, 1) = (B2 = BL)T (K =47 %) + (822 — B20)T (53 Ho — 41 )

BIAS1 BIAS2
N 2 NUTE S S
+% (Y2 = H251,1) +91 HeBi1 — A1 XiP1s -
N —
Error 1 Error 2

(1)

v

= Balancing control Biasl and Bias2. Bias2 arises due to dynamics

7 Why should we estimate 1, y2 sequentially?
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Residuals from balancing

Let the sigma algebra o(%1) € o(X1,D1) and 4;1 =0 if Dj1 # 1. Then

E[’?i,l Hi 285, — ’AYi,1Xi,15:1[,1‘X/,17 Di,l] =0.

Intuition:
o If D;j1 # 1 then the expression is zero by construction;
o If Dj1 =1, we can use the law of iterated expectations;

o If 41 depends on future observations, or %4; 1 = 1 for untreated units,
the expression is not necessarily zero.
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Guarantees

Under regularity assumptions:

Thm1l For n large enough, the optimization problem admits a feasible
solution which includes stabilized inverse-probability weights;
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Thm2 For log( Tpn)/n'/* — 0 (high-dimensions)
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Thm1l For n large enough, the optimization problem admits a feasible
solution which includes stabilized inverse-probability weights;

Thm2 For log( Tpn)/n'/* — 0 (high-dimensions)
fr(diT) — pr(dir) = Op(n~*/2).

Also, /nl|4¢]]2 = Op(1);

Thm3 Inference with chi-squared (x7(«)) and Gaussian critical values:

\/E(ﬁT(dl:T) - MT(dl;T)>
Vr(dy.7)1/2

lim P<’

n—oo

> Vxr(@) <.
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Guarantees

Under regularity assumptions:

Thm1l For n large enough, the optimization problem admits a feasible
solution which includes stabilized inverse-probability weights;

Thm2 For log( Tpn)/n'/* — 0 (high-dimensions)
fr(diT) — pr(dir) = Op(n~*/2).

Also, /nl|4¢]]2 = Op(1);

Thm3 Inference with chi-squared (x7(«)) and Gaussian critical values:

\/E(ﬁT(dl:T) - MT(dl;T)>
Vr(dy.7)1/2

lim P<’

n—oo

> Vxr(@) <.

= Confidence with Gaussian critical values if \/n||9:||2 converges
almost surely (e.g., for Bernoulli design).
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o Trade-offs for d,: larger §, guarantees feasibility, but increases bias;

@ Bias is of order ||5 — (||10,. Longer T implies larger estimation error
unless we assume limited carry-over effects;

@ In the paper: algorithmic procedure to find the smallest feasible §,,.
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e Numerical studies and empirical applications

Davide Viviano (Stanford GSB) July 26, 2023



Numerical Study

e Designs: gU) =1/j,80) =1/;2
@ Linear model, different level of overlap.
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Comparison with AIPW
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Advertisment and Elections
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Democracy and Growth

«our X Acemoglu et al. < AIPW x DCB x DCB2 x LP
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@ Conclusions
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Conclusion

@ We propose a method for estimating dynamic causal effects;

@ We provide an estimation and inferential procedure using novel
covariate balancing conditions;

@ We characterize asymptotic properties of the estimator, and study its
finite sample properties in numerical studies and empirical
applications.

Questions?

Link dviviano.github.io/projects
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