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Ex1 Informing users on platforms for voting (Bond et al., 2012)

Ex2 Informing farmers exposed to environmental disasters to increase
insurance take-up in rural China (Cai et al., 2015)

Q: Effect of scaling up the treatment on the pop? (overall effect)
= Challenge: information spillovers betw/ friends

= Cluster designs (Karrer et al., 2022; Duflo and Banerjee, 2018)
(i) Researchers partition the population into subgroups (e.g., villages)

(i) They randomize treatments at the cluster level

(iii) Estimator as difference in means betw/ treated and controls
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Cluster designs to capture overall effects

@ Many independent clusters to capture overall effects
= Means difference betw/ treated and controls unbiased for overall effect
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Cluster designs to capture overall effects

@ Many independent clusters to capture overall effects
= Means difference betw/ treated and controls unbiased for overall effect

Cluster 1 Cluster 2 Cluster 3

In practice...
= Not many clusters available (e.g., only one network)
= Uncertainty over spillover (and direct) effects

= Trade-offs in the choice and number of the clusters
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This paper: clustering for global effects estimation

@ When should you run a cluster experiment?

o Novel characterization of worst-case bias and variance
o Comparison with Bernoulli (i.i.d.) design with worst-case MSE
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This paper: clustering for global effects estimation

@ When should you run a cluster experiment?

o Novel characterization of worst-case bias and variance
o Comparison with Bernoulli (i.i.d.) design with worst-case MSE

@ How should you design the clusters?
e MSE-Optimal clustering as simple optimization (sd program)
o Application to unique data from Facebook graph

@ Conceptual contribution: clustering for treatment effect estimation
e Provide intuitive “cluster purity” measure as bias justification

@ Theoretical contribution: model spillovers through local asymptotics
e Variance only depends on average cluster size variation
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@ Experimental design with spillovers [Baird et al., 2018; Basse and Airoldi, 2018;
Johari et al. (2020); Viviano (2020); Pouget-Abadie et al. (2019, 2023) ]

@ Inference under interference [Hudgens and Halloran (2008); Aronow and Samii
(2017); Leung (2020); Athey et al. (2018); Savje et al. (2021); Liu and Wager, 2022 ]

@ Inference with clusters [Abadie et al., 2021; Ibragimov and Mueller, 2016; Canay et
al., 2017 |
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@ Experimental design with spillovers [Baird et al., 2018; Basse and Airoldi, 2018;
Johari et al. (2020); Viviano (2020); Pouget-Abadie et al. (2019, 2023) ]

@ Inference under interference [Hudgens and Halloran (2008); Aronow and Samii
(2017); Leung (2020); Athey et al. (2018); Savje et al. (2021); Liu and Wager, 2022 ]

@ Inference with clusters [Abadie et al., 2021; Ibragimov and Mueller, 2016; Canay et
al., 2017 |
= None study the problem of optimal cluster designs

e Graph clustering: rate optimal cluster size for e-clustering [Ugander et
al., 2013; Eckles et al., 2017; Leung, 2022; Faridani and Niehaus, 2022]

= Here optimal clustering method + novel bias/variance characterization
o Clustering in stat [Von Luxburg, 2007; Newman 2013; Lei et al. (2020), et al. ]
= Here different focus on clustering for causal inference
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© Setup
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e Finite pop: n units connected under adjacency matrix A (observed)
o Potential outcomes: Y;(d),d € {0,1}"
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e Finite pop: n units connected under adjacency matrix A (observed)
o Potential outcomes: Y;(d),d € {0,1}"
e Set of neighbors: N; = {j: A;; =1}
o Local interference: Yi(d) = pi(d;, dp;), pi € M

@ Cluster experiment: for cluster design Cp,

o Number of clusters: K,
o Cluster of unit i : c(i) € {1,--- , Ky}
o Cluster level treatment

D,‘ = DC(,-) ~ Bern(l/2)

e ny: number of units in cluster k

@ Estimand and difference in means estimator:

n

=23 M) - %), 2=23 Vo - i -0y
i=1 i=1
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Model on spillover effects

@ Class of models: for d’ € {1,0}

sup  |ui(1,d) — pi(1,d")
Ni(lr')eMl Zf\[
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@ Class of models: for d’ € {1,0}

sup (1, d) — (1, d")
Ni(lr')eMl Zf\[

Asm Consider local asymptotics ¢, = o(1):
= signal to noise is of order smaller than n
= ¢p > n_l/2 “moderately large” spillover effects
= ¢, < n~1/2 “small spillover effects
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Model on spillover effects

@ Class of models: for d’ € {1,0}

sup (1, d) — (1, d") Z

pi(1, ) eEMy iEN; ‘

Asm Consider local asymptotics ¢, = o(1):
= signal to noise is of order smaller than n
= ¢p > n_l/2 “moderately large” spillover effects
= ¢, < n~1/2 “small spillover effects

1/2

E.g. Write the overall effect as 7, = A, + ¢n, for Ap, ¢n = o(1).

E.g. Information experiments [Karrer et al. (2021)]
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© (When) should you cluster?

Davide Viviano November, 2023 11/18



Worst-case variance/bias?

Lem Worst-case outcome model justifies cluster purity:

sup (IE[?—,,|A,C,,} 77',,)2
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Worst-case variance/bias?

Lem Worst-case outcome model justifies cluster purity:

s, (Einc] —r) = 00 N £ <0

#i's friends not in i's cluster

= Clusters’ purity justified as estimator's bias!
Lem Let énNr?,max = O(l)r ’(Z = sup; max{/"i(l)2aui(0)2}v then
- n
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Lem Worst-case outcome model justifies cluster purity:

s, (Einc] —r) = 00 N £ <0

#i's friends not in i's cluster

= Clusters’ purity justified as estimator's bias!
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Worst-case variance/bias?

Lem Worst-case outcome model justifies cluster purity:

s, (Einc] —r) = 00 N £ <0

#i's friends not in i's cluster

= Clusters’ purity justified as estimator's bias!

Lem Let énNr?,max = O(l)r ’(Z = sup; max{/"i(l)2aui(0)2}v then

2 - A
Mseuf/l\/ar(ﬂA,C,,) = wz + o(1/Kp)

Variation in clusters’ size
= More clusters' size variation imply smaller variance

Key Bound (i, ) covariances with ¢, for (i,j) not in same cluster
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Clustering vs Bernoulli design

Thm For Cp,, denoting a Bernoulli design, under regularities
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= Exact threshold in the paper (rule of thumb /K¢, > 2.3)
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Clustering vs Bernoulli design

Thm For Cp,, denoting a Bernoulli design, under regularities

lim sup MSE,,(C,) — sup MSE,,(Co) > 0 if VKo — 0
=00 pu Iz

lim sup MSE,,(C,) — sup MSE,(Co) < 0 if /K — o0
I

n—oo o

Description Mathematical Formulation Implication
Spillovers are small VKapn = o(1) Run Bernoulli design

and # of clusters is small
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Thm For Cp,, denoting a Bernoulli design, under regularities

lim sup MSE,,(C,) — sup MSE,,(Co) > 0 if VKo — 0
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Description Mathematical Formulation Implication
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Clustering vs Bernoulli design

Thm For Cp , denoting a Bernoulli design, under regularities

lim supMSE,,(C,) — sup MSE,,(Co) > 0 if V Knpn — 0
n—oo 4 m

lim sup MSE,,(C,) — sup MSE,,(Co) < 0 if /Ky — o0
13

n—oo “w

Description Mathematical Formulation Implication
1/3

Spillovers are small Kn o< n,¢pp oxx n~ Run Cluster design

and # of clusters is very large
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Clustering vs Bernoulli design

Thm For Cp,, denoting a Bernoulli design, under regularities

lim sup MSE,,(C,) — sup MSE,,(Co) > 0 if VKo — 0
=00 pu Iz

lim sup MSE,,(C,) — sup MSE,(Co) < 0 if /K — o0
I

n—oo o

Description Mathematical Formulation Implication

Spillovers are not that small K, = O(1), ¢n = o(1) Run Bernoulli design
and # of clusters is very small

Davide Viviano November, 2023 13/18



© Optimal clustering
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Objective function for optimal clustering

Thm For any clustering C,, for ¢, = o(1),&n =
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Objective function for optimal clustering
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Objective function for optimal clustering

Thm For any clustering C,, for ¢, = o(1),&n = J%
1< Ko 2
sup MSE, () o« ( > Tl e ) £ ))& D T+ ol1/K)
k=1
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Objective function for optimal clustering

Thm For any clustering C,, for ¢, = o(1),&, =

ﬁ,“@l

x

n

2
sup MSE,(C) o Biasn(C) + &0 > % +o(1/Kp)
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Objective function for optimal clustering
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Objective function for optimal clustering

Thm For any clustering C,, for ¢, = o(1),&, =

X ?,{,"Sl

sup MSE,(C) x Bias,(C,)? +§nz = +o(1/K,,)
H k=1

Idea Focus on (surrogate) |Bias,(Cp)| + &, Zk 1 n2

Thm Let M(C'/;) = 1{c(i) = k}. For K, = K, optimization is equivalent to

c

!
max tr ( (L — i”l,,ln)Mc kM. ), L =diag(A1,)"'A
n s c,K
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Implementation

@ Choose n&), (e.g., 3.29)
@ Solution for sequence of K,
@ Trace-optimization solved via SDP Mc,KMIK + k-means

@ Compute best K, and clustering by comparing objectives
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Implementation

@ Choose n&), (e.g., 3.29)
@ Solution for sequence of K,
@ Trace-optimization solved via SDP Mc,KMIK + k-means

@ Compute best K, and clustering by comparing objectives
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@ Conclusions
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Conclusions

Novel causal clustering algorithm motivated by ATE estimation
Bias/Variance motivate measures of cluster purity/variation
Comparisons Cluster vs Bernoulli design

Algorithm to compute optimal clustering

Application using data from Meta (and field experiment)
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Conclusions

Novel causal clustering algorithm motivated by ATE estimation
Bias/Variance motivate measures of cluster purity/variation
Comparisons Cluster vs Bernoulli design

Algorithm to compute optimal clustering

Application using data from Meta (and field experiment)

Thanks very much, questions? :)
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Worst-case variance

Worst case variance depends on

Var(ﬂA,C,,) - % Zcov(u,-(o)(zn,- — 1), ;(D)(2D; — 1))

iJ

=0

hmm... and now?
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