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This document contains a list of lemmas from past literature used in the main derivations.

Appendix E Lemmas from past literature

E.1 Notation

We recall here the notation used in our derivations. Following Devroye et al. (2013)’s nota-
tion, for 2} = (x4, ..., z,) being arbitrary points in ™, for a function class F, with f € F,
f: X =R let Fab) ={f(z1),..., f(z,) : f € F}.

For a class of functions F, with f : X — R, Vf € F and n data points x4,...,x, € X
define the [,-covering number M, (77,.7-" (x’f)) to be the cardinality of the smallest cover
{s1,...,sn}, with s; € R", such that for each f € F, there exist an s; € {sq,..., sy} such
that (£ >0 [f(z:) — 3( )| )14 < 1. For F the envelope of F, define the Dudley’s integral as

log

F
Jy" \J1og (Ma(n, F(at)) ) dn.
For random variables X = (Xj,..., X,,), denote Ex|.] the expectation with respect to

X, conditional on the other variables inside the expectation operator. Let Xi,..., X, be
arbitrary random variables. Let o = {o;}!", be i.i.d Rademacher random variables (P(o; =
—1) = P(0; = 1) = 1/2), independent of X3, ..., X,,. The empirical Rademacher complexity
is R, (F) = Eg[supfef | LN~ o (Xi)|’X1, ..‘,Xn]

E.2 Lemmas

Lemma E.1. (Vershynin (2018), Lemma 6.4.2 and Boucheron et al. (2013), Lemma 11.4)
Let 01, ...,0, be Rademacher sequence independent of Xy, ..., X,,. Suppose that Xi,--- , X,
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are independent. Then
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Lemma E.2. (Brook’s Theorem,Brooks (1941)) For any connected undirected graph G with
mazximum degree A, the chromatic number of G is at most A unless G is a complete graph

or an odd cycle case the chromatic number is A + 1.

Lemma E.3. (Theorem 29.6, Devroye et al. (2013)) Let F, ..., Fr, k > 1 be classes of real
functions on X. For n arbitrary points x} = (x1,...,x,) € X", define F = {fi + ... +
fe:fj € F;, j=1,---,k}. Then for everyn > 0, z,n > 1,k > 1, /\/11(77,.7-"@’1‘)) <

[Ti-y M (n/ ke (@) ).

Lemma E.4. (Pollard, 1990) Let F and G be classes of real valued functions on X bounded
by My and My respectively. For arbitrary fived points x} € X", let

J(@1) = {(h(x1), ... h(azn);h € T}, T ={fg;f € F,g € G}.

Then for everyn > 0 and z},n > 1, M1<n,j( )> < M1<2M ,]—“(x’f))/\/ll(ﬁ,g(x?w

Lemma E.5. (Wenocur and Dudley, 1981) Let g : R — R be an arbitrary function and
consider the class of functions G ={g+ f,f € F}. Then VC(G) = VC(F) where VC(F),
VC(G) denotes the VC dimension respectively of F and G.

Lemma E.6. (From Theorem 5.22 in Wainwright (2019)) For a function class F, with
functions f : X — [—F, F], where F > 0 denotes the envelope of F, for fized points x7 € X",

and i.i.d. Rademacher random variables oy, ...,0, € {—1,1},

[sup‘Zazf x;) <32/ \/nlog F(z ?)))dn,

feFr
for any n > 1, where D, denotes the mazimum diameter of F(x}) according to the metric
n 1/q
dy(f,9) = (2 i (flws) = gl@))r)

Theorem 5.22 in Wainwright (2019) provides a general version of Lemma E.6. Equivalent

versions of Lemma E.6 are also in Van Der Vaart and Wellner (1996).
The following three lemmas control the Rademacher complexity in the presence of un-

bounded random variables and follow similarly to Kitagawa and Tetenov (2019).

Lemma E.7. (Lemma A.1, Kitagawa and Tetenov (2019)) Let to > 1, define

0, fort=0 B
g(t) = R =15~ L — k) 152~ 1),
t*1/2,t >1 20

Then g(t) < h(t), fort =0 and all t > 1.



Lemma E.8. Let by, ...,b, be independent Bernoulli random variables with b; ~ Bern(p;).
Letp= 23" p; withnp > 1 and g(.) as defined in the Lemma E.7. Then E[ <Zl 1 bi )} <
2(np) "2

Proof of Lemma E.8. The proof follows similarly to Kitagawa and Tetenov (2019), Lemma
A.2, where p is replaced by p and omitted for brevity. O

Lemma E.9 (From Lemma A.5 in Kitagawa and Tetenov (2019)). For any i € {1,--- ,n},
let X; € X be an arbitrary random variable and F a class of uniformly bounded functions
with envelope F. Let ;| X1, -+, X, be random variables independently but not necessarily
identically distributed, where €; > 0 is a scalar. Assume that for some u > 0, E[Q2""|Z] <
B, Vi € {1,---,n}. In addition assume that for any fized points =t € X", for some

V., >0, foralln > 1, f02F \/log (M1 <77,.7-"(x’f)))d7] < V. Let og; be i.i.d Rademacher

random variables independent of ()1, (X;)i—,. Then there ezist a constant 0 < Cp < 00
that only depend on F and u, such that for alln > 1

BV,

n .

/ [sup —ZO’Z O)1{Q; > w}’|X1, ,Xn} dw < Cp

feFr

Proof of Lemma E.9. The proof follows closely the one in Kitagawa and Tetenov (2019)
(Lemma A.5), with the difference that we express the bound in terms of the covering number
here. We refer to V;, as V for brevity, and X = (X;)",. Let

&n(w) = sup |— Zf DH{Q > whoi|, plw)= %ZP(QZ > w|X).
i=1

fer

Case 1 Consider first values of w for which np(w) = > | P(€; > w|X) < 1. Due to the

envelope condition, and the definition of Rademacher random variables,

1
< F- 21{9,» > w},Vf € F.

=1

‘—Zf DH{Q; > wlo;

Taking expectations we have E[£,(w)|X] < FE [% Yo H{Q > w}‘X] = F'p(w) and the
right hand side is bounded by F % for this particular case.

Case 2 Consider now values of w such that np(w) > 1. Define the random variable
N, =>""  1{Q; > w}. Then I can write

0if N, =0
N LSRR, > whoy if N, > 1.

—Zf DH{Q; > wlo; =
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If N, > 1, then
N, 1 &«
§nly) = sup | === ;f(xz)m{g, > w}‘
= su &L zn:f(X)Ul{Q > w} _ *(w)i zn:f(X)l{Q > w}0‘+
- p n Nw Z:1 K3 KA K3 p Nw 1:1 K3 k2 (A

Zf D1{Q; > whoy

<‘——p ‘?lelg‘N Zf DH{Q > wlo;

+ p(w ?EE’N Zf o 1{8 > w}.

Denote E, the expectation only with respect to the Rademacher random variables . Con-
ditional on N, &,(w) sums over N,, terms. Therefore, for a constant 0 < C} < oo that only
depend on F', by Theorem 5.22 in Wainwright (2019) (Lemma E.6)

E, Pl iug!—Zf Dol > wh| < Cip(w)Vg(N)
€ w -
where ¢(.) is defined in Lemma E.7. Similarly,

N,

Ea[__p

sup —Zf DH{Q; > wlo;

feFr

IX] < ‘——p ‘Clx/_g( w)-
For N, > 1, it follows by the law of iterated expectations,

Ny _
E[gn(w) [N, X] < |—==p(w)|C1V Vg(No)+Crp(w)VV g (Ny) < !f—p( )|ICVVACip(w)VV g(No)
(E.1)
where the last inequality follows by the definition of the g¢(.) function and the fact that
N, €{1,2,---}. For N, = 0 instead, we have

El6, @)V, X] <[22 — )| CLvTg(N) + Cupl)VTg(N,) =

by the definition of g(.). Hence, the bound in Equation (E.1) always holds.

Unconditional expectation We are left to bound the unconditional expectation with
respect to N,. Notice first that

EH% —ﬁ(w)“X} < Clﬁ\/EH% —p(w)‘Q‘X} — OV w(%i 1, > w}‘X).

By independence assumption,

C1\FV\lVar<:lzn:1{Qi>w}X)<Cl JEZH: (> w|X).
; 1




In addition, since np(w) > 1, by Lemma E.8 | E[g(N,)|Z] < x/ﬁ\;@' Combining the

inequalities, it follows

Mmmm<aﬁ¢;§¥mprHmmaﬁvJa@<mucmﬁdiip@>wm.

This bound is larger than the bound derived for np(w) < 1, up to a constant factor Cp < co.

Therefore, E[¢,(w)|X] <CF\/>\/ S P > wlX).

Integral bound I can now write

/0 Elén(w dew</ Cp\/VJiPQ > wlX) / [JiPQ > wlX)

=1 =1

/ CF[JE":PQ > wlX)

The first term is bounded as follows. fol Cr \/g \/ Yo wdw < Cp \/g The second

term is bounded instead as follows.

P(Q; >w|Z - EQ“"\X
[ e S B o Sz [
=1
<Oy

for a constant C; < oo that only depend on F and u. The proof completes. O
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