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1 Introduction

Researchers collect a panel of n independent observations observed over a finite number

of T periods in an observational study. The dataset encompasses time-varying covariates,

outcomes, and time-varying treatments. The primary objective is to conduct inference on

the average effect of exposure to different treatment histories, such as the effect of being

treated for a certain number of periods.

The first challenge is that treatments change dynamically over time. In a survey of

all articles in 2021 top-5 economics journals, more than 20% of studies with time-varying

treatments exhibit treatment dynamics, a figure similar in magnitude to the number of

papers utilizing Difference-in-Differences (DiD) designs (30%).1 Recent work has extended

DiD or related methods for when potential outcomes depend on a treatment path (see

De Chaisemartin and d’Haultfoeuille, 2022; Roth et al., 2023), but these approaches require

parallel trends across groups with different treatment paths. If units can dynamically choose

treatments in response to their previous outcomes (or treatments), this will lead to violations

of the parallel trends assumption (Ghanem et al., 2022; Marx et al., 2022). We, therefore,

introduce an approach that is valid when treatment decisions at period t can depend on

the history of outcomes and treatments prior to t. The second challenge is that treatment

dynamics are difficult to estimate. Individuals may select into treatment arbitrarily based

on high-dimensional covariates, outcomes, and treatments, e.g., when maximizing future

expected utilities (Heckman and Navarro, 2007). This motivates a method that does not

impose modeling assumptions on selection into treatment mechanisms (i.e., propensity score).

This paper studies the estimation and inference of the effects of treatment histories when

potential outcomes (and covariates) depend on present and past treatments. Individuals

dynamically select into treatment based on past (time-varying) covariates, outcomes, and

treatments. There are no unobserved confounders after controlling for high-dimensional past

characteristics (Ding and Li, 2019). Researchers remain agnostic on the propensity score.

We leverage a model on the potential outcomes’ conditional expectations as an (approx-

imately) linear function of previous potential outcomes and (high-dimensional) covariates

in each period. Our model is motivated by local projection frameworks (Jordà, 2005; Mon-

tiel Olea and Plagborg-Møller, 2021). Local projections impose a (linear) model on observed

outcomes conditional on each period observables and do not require estimating how each

time-varying covariate changes in response to treatments – which would be prone to large

estimation error in high dimensions. However, different from standard local projections, our

1This is based on the authors’ calculation. Top-5 economics journals are American Economic Review,
Econometrica, Journal of Political Economy, Quarterly Journal of Economics, Review of Economic Studies.
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model is imposed on expected potential instead of observed outcomes. This difference is

important here because of treatments’ serial correlation and selection into treatment based

on past outcomes and covariates: a model on realized outcomes imposes restrictions on the

distribution of the treatment assignments, whereas a potential outcome model does not.

Building on the literature on marginal structural models (Robins et al., 2000), we identify

the parameters of interest by recursively projecting outcomes’ conditional expectations over

past histories, allowing for dynamic selection into treatment.

Our estimation method, Dynamic Covariate Balancing (DCB), estimates the parameters

of the model by using recursive penalized projections through lasso (Hastie et al., 2015). It

then reweights observations to guarantee balance between treated and control units. Balanc-

ing covariates is intuitive and common in practice: in cross-sectional studies, treatment, and

control units are comparable when the two groups have similar characteristics (Hainmueller,

2012; Imai and Ratkovic, 2014; Li et al., 2018). We generalize covariate balancing in the

absence of dynamics of Athey et al. (2018); Ben-Michael et al. (2018); Hirshberg and Wager

(2017); Zubizarreta (2015) to a dynamic setting. We show that balancing with potential

local projections corresponds to constructing weights sequentially in time by first balanc-

ing treated and control units’ covariates in the first period and then balancing histories in

the next periods reweighted by the weights obtained in the previous period. The estimated

balancing weights solve a sequence of quadratic programs to minimize the weights’ variance.

Our estimation procedure guarantees a vanishing bias of order faster than n−1/2 and a

parametric rate of convergence of the estimated treatment effect in high-dimensional set-

tings. In addition, the optimization problem over the set of balancing weights admits a

feasible solution, with the true propensity score being one such solution (and without re-

quiring knowledge of it). This result highlights the benefits of balancing over propensity

score reweighting here: the proposed balancing weights have a smaller variance than inverse

probability weights and – by leveraging an (approximate) high-dimensional linear outcome

model – do not require the correct specification of the propensity score.2 This is an advan-

tage especially in dynamic settings: the propensity score defines the joint probability that

units are assigned to a given treatment history, and therefore inverse probability weights

can exhibit large variance in finite sample (see e.g., Figure 9). Finally, we provide guar-

antees for inference. Relative to cross-sectional studies, our dynamic structure necessitates

2Typical methods in high dimensions require conditions on the product of the rates of estimators for the
propensity score and coefficients of the linear model to be faster than n−1/4, and also require consistent
estimation of both the outcome model and propensity score model (what known as rate-doubly robustness,
see e.g., Athey and Wager, 2021). Compared to estimating the propensity score with a semi-parametric
model, our guarantees do not depend on the estimation error of the propensity score (only require that the
estimation error of the coefficients is o(n−1/4)), by leveraging the high dimensional linear outcome model.
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novel considerations for identification, balancing, and derivations, that require analyzing

joint distributions of correlated residuals from sequential projections.

We illustrate our method in an empirical application using data from Acemoglu et al.

(2019) on studying the effects of democracy on economic growth. Here, the authors assume

a dynamic selection model. Whereas effects are in magnitude and sign consistent with

Acemoglu et al. (2019), we show that standard local projections and Acemoglu et al. (2019)’s

linear regression lead to significantly smaller point estimates compared to our approach. We

also show that (A)IPW methods lead to a more substantial imbalance (and bias) compared

to DCB due to the instability of the propensity score in both high and low-dimensions.

Our problem connects to the literature on DiD methods, local projections, and dynamic

treatments. We provide a formal comparison in Section 2.4 and an overview below.

Different from the literature on DiD (Abraham and Sun, 2018; Athey and Imbens, 2022;

Callaway and Sant’Anna, 2019; de Chaisemartin and d’Haultfoeuille, 2019; Goodman-Bacon,

2021; Imai and Kim, 2016; Rambachan and Roth, 2023; Roth, 2022), here we allow for dy-

namic selection into treatment, violated under parallel trends assumed in this literature

(Ghanem et al., 2022; Marx et al., 2022). Different from the time-series literature (Mon-

tiel Olea and Plagborg-Møller, 2021; Plagborg-Møller, 2019; Stock and Watson, 2018), this

paper uses information from panel data and allows for arbitrary dependence of outcomes,

covariates, and treatment assignments over time. This difference motivates the recursive

identification and estimation strategy proposed here. For instance, in the context of local

projections, Rambachan and Shephard (2019) show that the causal interpretability of local

projections relies on independent assignments over time. Here, we consider serially correlated

treatments that depend on past outcomes. Finally, in a more recent work Dube et al. (2023)

study local projections with DiD designs. Different from the current paper, the authors do

not consider recursive projections or balancing methods, and they assume parallel trends.

Our paper provides the first dynamic balancing equations under a local projection model.

In econometrics, Arkhangelsky and Imbens (2019) propose balancing assuming no treatment

dynamics, whereas here, treatment dynamics require different (and novel) balancing condi-

tions. In the statistics literature, we generalize balancing in static settings (e.g. Ben-Michael

et al., 2018) to dynamic settings. In the context of dynamics, different from Imai and

Ratkovic (2015), who estimate a single set of balancing weights over all possible combina-

tions of time periods and covariates, here the number of moment conditions grows linearly

with T and not exponentially. Unlike Zhou and Wodtke (2018), who extend entropy bal-

ancing of Hainmueller (2012) to dynamic settings, we do not estimate one model for each

covariate in the past (which is prone to large estimation error in high dimensions). DCB ex-

plicitly characterizes the high-dimensional model’s bias in a dynamic setting to avoid overly
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conservative moment conditions, while Kallus and Santacatterina (2018) design conservative

balancing conditions for the worst-case bias. Different from Yiu and Su (2018), we do not

require estimating the propensity score. Our insight with respect to all these references (both

for high and low dimensional settings) is that by leveraging a potential local projection model

and computing balancing weights sequentially, balancing reduces to few and easy-to-compute

dynamic restrictions. This insight is even more relevant with high-dimensional covariates,

which none of these references study for dynamic treatments.

Our approach connects to the literature on dynamic treatments. A typical approach in

the dynamic treatment literature is to estimate a dynamic choice model, i.e., propensity score

(e.g. Heckman et al., 2016; Heckman and Navarro, 2007). Here, we leverage the potential

outcome model to estimate treatment effects consistently without necessitating consistent es-

timation of the treatment assignment mechanism. References in bio-statistics include Robins

(1986), Robins et al. (2000), Hernán et al. (2001), Boruvka et al. (2018), Blackwell (2013),

Bang and Robins (2005) (for a review, Vansteelandt et al., 2014). Bojinov and Shephard

(2019), Bojinov et al. (2020) study IPW estimators from a design-based perspective.

Doubly robust estimators for dynamic treatments have been studied by Babino et al.

(2019); Jiang and Li (2015); Nie et al. (2021); Tchetgen and Shpitser (2012); Zhang et al.

(2013). These methods use information from the estimated propensity score. Therefore,

in high dimensions, they are sensitive to the misspecification of the propensity score (e.g.,

Farrell, 2015). Similarly, in studies regarding high-dimensional panel data, researchers re-

quire correct specification of the propensity score (Belloni et al., 2016; Bodory et al., 2020;

Chernozhukov et al., 2017, 2018; Lewis and Syrgkanis, 2020; Shi et al., 2018; Zhu, 2017), or

impose homogeneous treatment effects (Kock and Tang, 2015; Krampe et al., 2020) (Lewis

and Syrgkanis (2020) also provide bounds on how misspecification of the propensity score

affect rates of convergence). Bodory et al. (2020) propose doubly robust estimators that

leverage product of rates assumptions (and consistent estimation of the propensity score).

More generally, prior works that formally study properties of dynamic AIPW methods in

high dimensions require product of rates conditions for the estimated propensity score and

conditional mean function, and consistent estimation of both. The reader may refer to follow-

up work of Bradic et al. (2021), who provide an extensive study of doubly-robust methods

under these conditions in high dimensions. Different from all these references, our framework

does not require consistent estimation of the propensity score, relevant, for example, when

individuals select into treatment when maximizing an unobserved utility function. Finally,

in work subsequent to the current paper, Chernozhukov et al. (2022) generalize balancing

with dynamics for arbitrary influence functions, allowing for non-linear outcome models. Our

focus on the potential local projection model is motivated by its wide use in applications.
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2 Dynamics and potential local projections

This section introduces the setup and main assumptions in the presence of two time periods.

We extend our framework to multiple time periods in Section 4.1.

Researchers observe a panel with n i.i.d. copies of a random vector3(
Xi,1, Di,1, Yi,1, Xi,2, Di,2, Yi,2

)
∼i.i.d. P

where Di,1, Di,2 ∈ {0, 1} are binary treatments at time t = 1, t = 2, respectively, Xi,t, Yi,t

denote covariates and the outcome at time t. We allow for arbitrary nonstationarity and

dependence over time for a given unit. Whenever we omit the index i (e.g., writing Dt),

we refer to the vector of observations for all n units. Covariates, treatments and outcomes

realize as in Figure 1. We refer to 1 and 0 as vectors of ones and zeros of dimension T .

| | |
t = 0 t = 1 t = 2

X1, D1, (Y1, X2), D2, Y2

Figure 1: Sampling process in two periods. First, baseline covariates Xi,1 realize at t = 0.
Then, treatment Di,1 is assigned and the outcomes and covariates (Yi,1, Xi,2) realize at t = 1.
Finally, the treatment Di,2 is assigned and, afterwards, the endline outcome Yi,2 realizes.

2.1 Estimand

Potential outcomes are functions of the entire treatment history. Define Yi,2(d1, d2) the

potential outcome at time t = 2, under treatment d1 in the first period and d2 in the second

period. Our goal is to conduct inference on the estimand(s)

ATE(d1:2, d
′
1:2) = µ2(d1, d2)− µ2(d

′
1, d

′
2), µ2(d1, d2) = E

[
Yi,2(d1, d2)

]
,

for given treatment histories (d1, d2), (d
′
1, d

′
2). For example, researchers may be interested

in estimating ATE(1,0), which denotes the total effect of treating an individual for two

consecutive periods (Athey and Imbens, 2022); or the direct effect ATE((1, 0),0), which

denotes the effect of increasing the treatment in the first period only. Our framework allows

for generic ATE(d1:2, d
′
1:2) for arbitrary histories (d1:2, d

′
1:2). Figure 2 shows that the treatment

3In practice, the panel can be either balanced or unbalanced. See Section 5.
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effects typically capture two sources of dynamics: the direct effect of the treatment on the

outcomes and the indirect effect through intermediate covariates and outcomes.

2.2 Sequential selection into treatment

Treatment histories may affect (intermediate) outcomes and covariates. Let Yi,1(d1, d2), Xi,2(d1, d2)

be the intermediate potential outcome and potential covariates for a treatment history

(d1, d2). Here, Xi,1 denotes baseline covariates.

Assumption 1 (No Anticipation). For d1 ∈ {0, 1}, let (i) Yi,1(d1, 1) = Yi,1(d1, 0), and (ii)

Xi,2(d1, 1) = Xi,2(d1, 0).

Assumption 1 has two implications: (i) intermediate potential outcomes only depend on

past but not future treatments; (ii) the treatment status at t = 2 has no contemporaneous

effect on covariates.4 Assumption 1 allows for anticipatory effects governed by expectations

(Heckman and Navarro, 2007) (e.g., individuals may select into treatment based on expected

future utilities), but it prohibits anticipatory effects based on the future treatment realiza-

tions (see Athey and Imbens, 2022; Bojinov and Shephard, 2019, for a discussion). Also,

Assumption 1 does not impose restrictions on treatments (D1, D2).

Example 2.1 (Observed outcomes). Consider a dynamic model of the form

Yi,2 = g2

(
Yi,1, Xi,1, Xi,2, Di,1, Di,2, εi,2

)
, Yi,1 = g1

(
Xi,1, Di,1, εi,1

)
, Xi,2 = g0

(
Xi,1, Di,1, εi,X

)
for some arbitrary functions g2(·), g1(·), g0(·) and unobservables (εi,2, εi,1, εi,X), with

εi,2 ⊥ Di,2|Yi,1, Xi,1, Xi,2, Di,1, (εi,X , εi,1) ⊥ Di,1|Xi,1.

We can write

Yi,2(d1, d2) = g2

(
Yi,1(d1), Xi,1, Xi,2(d1), d1, d2, εi,2

)
,

where Yi,1(d1) = g1

(
Xi,1, d1, εi,1

)
, Xi,2 = g0

(
Xi,1, d1, εi,X

)
. Since g1(·), g0(·) are not functions

of d2, Assumption 1 holds, for any (Di,1, Di,2). Here,

ATE(1,0) = E
[
g2

(
Yi,1(1), Xi,1, Xi,2(1), 1, 1, εi,2

)]
− E

[
g2

(
Yi,1(0), Xi,1, Xi,2(0), 0, 0, εi,2

)]
,

defines the overall effect. (Assumption 3 below will impose restrictions on E[g2(·)].)
4No anticipation was first introduced in duration models in Abbring and Van den Berg (2003).
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In the rest of our discussion, we index potential outcomes and covariates by past treatment

history under Assumption 1. We define Hi,2 =
[
Di,1, Xi,1, Xi,2, Yi,1

]
, the vector of past

treatment assignments, covariates, and outcomes in the previous period. We refer to

Hi,2(d1) =
[
d1, Xi,1, Xi,2(d1), Yi,1(d1)

]
as the potential history under treatment status d1 in the first period. Here, Hi,2 can include

interaction terms, omitted for brevity.

Assumption 2 (Sequential Ignorability). Assume that for all (d1, d2) ∈ {0, 1}2 ,

(A) Yi,2(d1, d2) ⊥ Di,2

∣∣∣Di,1, Xi,1, Xi,2, Yi,1

(B)
(
Yi,2(d1, d2), Hi,2(d1)

)
⊥ Di,1

∣∣∣Xi,1,

Sequential ignorability is common in the literature on dynamic treatments (Robins et al.,

2000). It states that treatment in the first period is exogenous conditional on baseline

covariates, and the treatment in the second period is exogenous conditional on all observable

characteristics at time t = 2. Sequential ignorability assumes no unobserved factors after

controlling for high dimensional observable characteristics and arbitrary past information.

Sequential ignorability differs from and complements parallel trend restrictions in the DiD

literature, which would not allow for dynamic selection into treatment (Ghanem et al., 2022;

Roth et al., 2023). The choice between a DiD design or a dynamic treatment design depends

on the nature of selection into treatment, with the dynamic treatment design most suited

when treatments are likely to change over time based on past information.

A class of economic models satisfying Assumption 2 are discrete choice models under

conditional independence assumptions considered in Heckman et al. (2016), Heckman and

Navarro (2007), Rust (1994), to cite some. As noted in Heckman et al. (2016), conditional

independence assumptions “are especially well motivated if analysts have rich data on the

determinants of choices,” here formalized by assuming that covariates are high dimensional.5

Example 2.1 Cont’d Assumption 2 holds if

Di,2 = f2

(
Di,1, Xi,1, Xi,2, Yi,1, εDi,2

)
, Di,1 = f1

(
Xi,1, εDi,1

)
, (1)

5Experiments in marketing, political campaigns or medical treatments are other examples where sequen-
tial ignorability have often been invoked (e.g. Acemoglu et al., 2019; Blackwell, 2013; Boruvka et al., 2018).
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for some arbitrary (unknown) functions f1, f2, where the unobservables satisfy

εDi,2
⊥ εi,2

∣∣∣D1,i, Xi,1, Xi,2, Yi,1, εDi,1
⊥ (εi,1, εi,2)

∣∣∣Xi,1.

D1 Y1, X2

D2

Y2 D1 Y1, X2

D2

Y2

Figure 2: The left panel illustrates all the possible causal paths under Sequential Ignorability
(Assumption 2). Here, past treatments may affect intermediate covariates, and future treat-
ments may depend on past treatments, covariates and outcomes. The right panel presents
two estimands of interest. In particular, ATE(1,0) (the effect of increasing treatments in
both periods) denotes the effect mediated through all red edges, including the dotted red
edge. Instead, ATE((1, 0), (0, 0)) (the direct effect of only increasing treatment in the first
period) denotes the effect mediated through all red edges excluding the dotted red edge.

2.3 Potential local projections

Following in spirit, Jordà (2005), we approximate the expectation of potential outcomes

as linear functions of (high-dimensional) past characteristics. Different from Jordà (2005),

linearity is imposed on expected potential instead of realized outcomes. Define

θ1(x1, d1, d2) = E
[
Yi,2(d1, d2)

∣∣∣Xi,1 = x1

]
,

θ2(x1, x2, y1, d1, d2) = E
[
Yi,2(d1, d2)

∣∣∣Xi,1 = x1, Xi,2 = x2, Yi,1 = y1, Di,1 = d1

]
,

the conditional expectation of the potential outcome, given baseline covariates (t = 1), and

given the history at time t = 2, respectively.

Assumption 3 (Model). For some β
(1)
d1,d2

∈ Rp1 , β
(2)
d1,d2

∈ Rp2

θ1(x1, d1, d2) = x1β
(1)
d1,d2

, θ2

(
x1, x2, y1, d1, d2

)
=

[
d1, x1, x2, y1

]
β
(2)
d1,d2

.

Assumption 3 allows for heterogeneity in the treatment history (d1, d2), and the dimen-

sions p1, p2 can be large (grow with n, either or both because of additional covariates or also

covariates transformations). As for marginal structural models (Robins et al., 2000), the
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model in Assumption 3 has two advantages. First, it does not require estimating a struc-

tural model for each time-varying-covariate, that would be prone to large estimation error

in high dimensions. Second, it is agnostic on the treatment assignment mechanism because

the model is imposed on potential outcomes. Time fixed-effects are directly incorporated in

the model, since coefficients (and intercepts) can vary with time.

Lemma 2.1 (Identification). Let Assumptions 1, 2, 3 hold. Then

E
[
Yi,2

∣∣∣Hi,2, Di,2 = d2, Di,1 = d1

]
= E

[
Yi,2(d1, d2)

∣∣∣Hi,2, Di,1 = d1

]
= Hi,2(d1)β

(2)
d1,d2

E
[
E
[
Yi,2

∣∣∣Hi,2, Di,2 = d2, Di,1 = d1

]∣∣∣Xi,1, Di,1 = d1

]
= E

[
Yi,2(d1, d2)

∣∣∣Xi,1

]
= Xi,1β

(1)
d1,d2

.

The proof is in Appendix A.1. Lemma 2.1 builds on results in the literature on marginal

structural models (Bang and Robins, 2005; Robins et al., 2000; Tran et al., 2019). The

connection we make between marginal structural models and local projections in economics

is a contribution of independent interest. Lemma 2.1 motivates a recursive identification

(and estimation) strategy, where we first project the observed outcome on the information

in the second period. We then project its conditional expectation on information in the first

period while controlling for the treatment in the second period (see Section 3).

Example 2.2 (Linear Model). LetXi,1, Xi,2 also contain an intercept. Consider the following

set of conditional expectations

E
[
Yi,1(d1)

∣∣∣Xi,1

]
= Xi,1αd1 , E

[
Xi,2(d1)

∣∣∣Xi,1

]
= Wd1Xi,1

E
[
Yi,2(d1, d1)

∣∣∣Xi,1, Xi,2, Yi,1, Di,1 = d1

]
=

(
Xi,1, Xi,2(d1), Yi,1(d1)

)
β
(2)
d1,d2

,

for some arbitrary parameters αd1 ∈ Rp1 and β
(2)
d1,d2

∈ Rp2 . In the above display, Wd1 , Vd1

denote unknown matrices in Rp2×p1 . The model satisfies Assumption 3.6

Remark 1 (Linearity in high-dimensions as an approximation to the true model). In the

same spirit of Belloni et al. (2014), our results also directly extend to the case where we

relax Assumption 3 and assume only approximate linearity up to an order Op(rp), where

rp is an arbitrary sequence which depends on p with rp = o(n−1/2).7 This setting embeds

6Model with time-varying covariates have also been studied in more recent work of Caetano et al. (2022).
Caetano et al. (2022) study DiD estimators with time-varying covariates assuming parallel trends instead of
dynamic selection into treatment, hence presenting an analysis different (and complementary) to ours.

7We do not include O(rp) in Assumption 3 for expositional convenience, as we would need to carry over
the O(rp) throughout the text. None of the results, however, remain unchanged with the additional O(rp)
for rp = o(n−1/2), see Theorem 4.4, where we show that convergence rates of the estimator is of order n−1/2.
The approximation error of the linear model typically differs from the estimation error rate of the estimated
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empirical applications where many covariates (and their transformation) can approximate

the conditional mean function as linear. Linearity here also allows us to (re)interpret existing

estimators widely used in applications such as local projections. We note that even estimators

that use the propensity score require consistent estimation of the coefficients of a linear model

in high-dimensions, what known as rate doubly-robustness (e.g. Athey and Wager, 2021).

2.4 Examples and comparisons with local projections and DiD

We pause here to compare our assumptions with those of local projections and DiD.

Different from standard local projections, here we assume and identify a local projection

model for potential outcomes Y2(d1, d2) instead of realized outcomes Y2 (see Jordà, 2005;

Montiel Olea and Plagborg-Møller, 2021, for reviews of these models). To illustrate this

difference, consider a two periods settings without time-varying covariates, and

Yi,t = Yi,t−1α +Di,tβ +Xi,1γ + εi,t, E
[
εi,t

∣∣∣Yi,t−1, Di,t, Di,t−1, Xi,1

]
= 0. (2)

Under Equation (2), we can write

E
[
Yi,2|Xi,1, Di,1

]
= αβDi,1 + βE

[
Di,2|Xi,1, Di,1

]
+Xi,1(γ + αγ)

E
[
Yi,2|Xi,1, Di,2, Di,1

]
= αβDi,1 + βDi,2 +Xi,1(γ + αγ) + E[εi,1|Di,2, Xi,1]

E
[
Yi,2(d1, d2)|Xi,1, Di,1

]
= αβd1 + βd2 +Xi,1(γ + αγ)

(3)

The first equation is a reduced form corresponding to regressing the outcome at time t = 2

on past treatments and covariates, the second equation is its equivalent also controlling for

Di,2 (see Alloza et al., 2020), and the third is the reduced form for potential outcomes.

The first equation in (3) shows that the interpretation of the parameters of the local pro-

jection of the observed outcome Yi,2 onto (Di,1, Xi,1) depends on properties of E
[
Di,2|Xi,1, Di,1

]
.

Once we project Yi,2 onto (Di,1, Xi,1), the estimated coefficient for Di,1 denotes the effect of

treating an individual at time t = 1 only if Di,2 and Di,1 are independent. The second

equation shows that controlling for Di,2 may lead to omitted variable bias on the coefficient

multiplying Di,2 if future treatments depend on past outcomes. Therefore, standard local

projections recover estimands whose interpretation depends on the distribution of the treat-

ments, whereas the treatments’ distribution may change with a change in policy (see e.g.

Wolf and McKay, 2022, for an insightful discussion). A third possible approach and different

coefficients which we will assume to be of order o(n−1/4) (for example Belloni et al., 2014, , Page 9, require
the approximation rp of order n−1/2 with fixed sparsity).
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from the specifications in (3) is to estimate each equation for Yi,t, Yi,t−1, Xi,t and obtain the

desired ATE(·) through products and sums of the coefficients. This approach is prone to

large estimation error with high-dimensional time-varying covariates because it estimates a

separate model for each covariate.8 Our approach leverages the potential outcome model in

the third equation in (3), whose parameters do not depend on the realized treatments D′s.

Our problem also connects to the literature on two-way fixed effects and Difference-in-

Differences (see Roth et al., 2023, for an overview). This literature focuses on staggered

adoption, whereas treatments here can change arbitrarily over time. In particular, the par-

allel trend assumption in DiD designs prohibits dynamic selection into treatment considered

here (see Ghanem et al., 2022; Marx et al., 2022, for a discussion). Using Equation (3) for

a simple illustration, we can interpret a version of parallel trends as

E
[
εi,t − εi,t−1

∣∣∣Di,1:T = 1
]
= E

[
εi,t − εi,t−1

∣∣∣Di,1:T = 0
]
, (4)

violated when future assignments depend on past outcomes (and therefore εi,t). Therefore,

DiD designs are suited in the presence of unobserved additive unit-level confounders but lack

of dynamic selection different from (and complementary to) our framework.

3 Estimation with dynamic balancing in two periods

This section studies estimation in two periods. We defer to Section 5 a complete guide for

practice, including discussion about the model, tuning parameters, and complexity.

3.1 Estimation of the coefficients

We first estimate the regression coefficients with Algorithm 1. The algorithm recursively

projects the estimated conditional mean functions on past histories. Specifically, we first

estimate a linear model for Yi,2 conditional on the history Hi,2. We then estimate a linear

model for the predicted value of Yi,2 – controlling for its treatment at time t = 2 – and

projecting this onto covariates at time t = 1.

We use lasso for penalization (Hastie et al., 2015). The algorithm considers two separate

model specifications. The first allows for arbitrary heterogeneity in observable characteristics.

This specification is cumbersome for longer time horizons because the effective sample size

shrinks exponentially with the number of periods (see the discussion in Section 5). The

second specification assumes separable treatment effects, and it is more parsimonious. It is

8This follows similarly to discussion motivating local projections over vector auto-regression models
(Jordà, 2005; Montiel Olea and Plagborg-Møller, 2021).
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possible to model heterogeneity in treatment effects in the second specification by including

interaction terms between observable characteristics and treatments. We require that the

parameters of the estimated model converge to the true parameters of the linear model for

each regression at a rate of order o(n−1/4). This condition is typically attained for lasso and

discussed in detail in Section 4.2 (Assumption 6 (i) and discussion therein). Therefore, given

the convergence rate requirement, a more parsimonious model such as the linear model in

Algorithm 1 imposes stronger restrictions on the estimation error of the parameters.

Algorithm 1 Recursive local projection for t = 2

Require: Observations, history d1:2 = (d1, d2), model ∈ {full interactions, linear}.
1: if model = full interactions then
2: Estimate β

(2)
d1:2

by regressing Yi,2 onto Hi,2 for all i : (Di,1:2 = d1:2);

3: Estimate β
(1)
d1:2

by regression Hi,2β̂
2
d1:2

onto Xi,1 for i that has Di,1 = d1.
4: else
5: Estimate β(2) by regressing Yi,2 onto (Hi,2, Di,2) for all i (without penalizing

(Di,1, Di,2)) and define Hi,2β̂d1,d2 = (Hi,2, d2)β̂
(2) for all i : Di,1 = d1 ;

6: Estimate β(1) by regressing (Hi,2, d2)β̂
2 onto (Xi,1, Di,1) for all i (without penalizing

Di,1) and define Xi,1β̂
(1)
d1,d2

= (Xi,1, d1)β̂
(1) for all i.

7: end if

3.2 Dynamic covariate balancing

Di,2 = 1 Di,2 = 0

Di,1 = 1

Di,1 = 0

Figure 3: Balancing to estimate E[Y2(1, 1)]. In the first period we balance covariates of those
individuals in the (light and dark) shaded areas with those of all the individuals (red box).
In the second period we balance covariates between the gray and black box.

Given the estimated coefficients β̂(1), β̂(2), and following previous literature on doubly-

robust scores (Jiang and Li, 2015; Nie et al., 2021; Tchetgen and Shpitser, 2012; Zhang

et al., 2013), we propose an estimator that exploits linearity while reweighting observations

13



to guarantee balance. Formally, we consider an estimator

µ̂2(d1, d2; γ̂1, γ̂2) =

n∑
i=1

{
γ̂i,2(d1, d2)Yi,2 −

(
γ̂i,2(d1, d2)− γ̂i,1(d1, d2)

)
Hi,2β̂

(2)
d1,d2

}
−

n∑
i=1

(
γ̂i,1(d1, d2)−

1

n

)
Xi,1β̂

(1)
d1,d2

.

(5)

The estimator in (5) uses regression adjustments over each period, and reweight observations

by weights γ̂1, γ̂2 (inputs of the estimator). The construction of such estimator leverages

properties of influence functions (Tchetgen and Shpitser, 2012). We will omit the arguments

(γ̂1, γ̂2) in µ̂2 whenever clear from the context.

A first choice of the weights are inverse probability weights (IPW). As for multi-valued

treatments (Imbens, 2000), these weights for the first and second period can be written as

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)

,
1{Di,1 = d1}

nP (Di,1 = d1|Xi,1)
× 1{Di,2 = d2}

P (Di,2 = d2|Yi,1, Xi,1, Xi,2, Di,1)
. (6)

However, in high dimensions, IPW weights require the correct specification of the propen-

sity score, which in practice may be unknown. Also, in small sample, such weights are sen-

sitive to poor overlap (high variance), because inverse probability weights denote the entire

treatment history. Motivated by these considerations, we leverage the local projection model

and propose replacing IPW with more stable weights.

We start studying covariate balancing conditions induced by the local projection model.

By denoting X̄1 the sample average of covariates X1, we can write

µ̂2(d1, d2) = X̄1β
(1)
d1,d2

+ T1 + T2 + T3, (7)

where

T1 =
(
γ̂1(d1, d2)

⊤X1 − X̄1

)
(β

(1)
d1,d2

− β̂
(1)
d1,d2

) +
(
γ̂2(d1, d2)

⊤H2 − γ̂1(d1, d2)
⊤H2

)
(β

(2)
d1,d2

− β̂
(2)
d1,d2

)

(8)

and

T2 = γ̂2(d1, d2)
⊤
[
Y2 −H2β

2
d1,d2

]
, T3 = γ̂1(d1, d2)

⊤
[
H2β

2
d1,d2

−X1β
(1)
d1,d2

]
.
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Lemma 3.1 (Covariate balancing conditions). The following holds

T1 ≤∥β̂1
d1,d2

− β
(1)
d1,d2

∥1
∣∣∣∣∣∣X̄1 − γ̂1(d1, d2)

⊤X1

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(i)

+

∥β̂2
d1,d2

− β
(2)
d1,d2

∥1
∣∣∣∣∣∣γ̂2(d1, d2)⊤H2 − γ̂1(d1, d2)

⊤H2

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(ii)

.

Element (i) is equivalent to what is discussed in Athey et al. (2018) in one period setting.

Element (ii) depends on the additional error induced by dynamics in the second period. The

estimation error depends on the product between the imbalance of covariates characterized

by the expressions in (i), (ii) and the estimation error of the coefficients, in the spirit of

strong doubly-robustness properties. Therefore the above suggests controlling the norms∣∣∣∣∣∣X̄1 − γ̂1(d1, d2)
⊤X1

∣∣∣∣∣∣
∞
,

∣∣∣∣∣∣γ̂2(d1, d2)⊤H2 − γ̂1(d1, d2)
⊤H2

∣∣∣∣∣∣
∞
. (9)

By imposing that the first norm converges to zero, the weights in the first-period balance

covariates in the first period only. The second condition requires that histories in the second

period are balanced, given the weights in the previous period.

The remaining terms in (7) are mean zero under the following conditions.

Lemma 3.2 (Balancing error). Let assumptions 1 - 3 hold. Suppose that γ̂1 is measurable

with respect to the sigma algebra σ(X1, D1) and γ̂2 is measurable with respect to the sigma

algebra σ(X1, X2, Y1, D1, D2). Suppose in addition that γ̂i,1(d1, d2) = 0 if Di,1 ̸= d1 and

γ̂i,2(d1, d2) = 0 if (Di,1, Di,2) ̸= (d1, d2). Then

E
[
T2

∣∣∣X1, D1, Y1, X2, D2

]
= 0, E

[
T3

∣∣∣X1, D1

]
= 0.

The proof is in Appendix A.3. Lemma 3.2 conveys a key insight: if we can guarantee that

each component in Equation (9) is sufficiently small, µ̂ is centered around the target estimand

plus a small estimation error (since E[X̄1]β
(1)
d1,d2

= E[Yi,2(d1, d2)]). Lemma 3.2 imposes the

following intuitive conditions. The balancing weights in the first period are non-zero only

for those units whose assignment in the first period coincide with the target assignment d1,

and similarly for (d1, d2) in the second period. Moreover, we can only balance based on

information observed before the realization of potential outcomes but not based on future

information. A special case of weights satisfying such conditions are IPW weights in (6).

Algorithm 2 presents the algorithmic details in two periods. In the first period, we balance

baseline covariates between the treated and control groups as in Athey et al. (2018). Second,
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we estimate γ̂2 for the desired treatment history (Di,1, Di,2) = (d1, d2). The weights γ̂i,2 are

not zero only for individuals with treatment history (Di,1, Di,2) = (d1, d2) as discussed in

Lemma 3.2. The estimated weights γ̂2 balance observable characteristics between different

treatment groups at time t = 2, after reweighting with the weights estimated in the previous

period. We choose weights that sum to one, are positive, and do not assign the largest

weight to a few observations. For each period, the optimization problem solves a quadratic

program recursively that minimizes the weights’ variances (and with scalable computational

complexity). In Section 5 we provide more details about its implementation.

Finally, note that the advantages of balancing are well understood both in high and low

dimensional scenarios (Zubizarreta, 2015). Here, because we consider an arbitrary class of

weights γ̂ (i.e., without imposing parametric assumptions on such weights, see Bruns-Smith

et al., 2023), our residual balancing procedure improves balance (and improve the estimator’s

performance) in both high and low dimensional settings.

Algorithm 2 Dynamic covariate balancing (DCB): two periods

Require: Observations (D1, X1, Y1, D2, X2, Y2), treatment history (d1, d2), finite parameters
K, constraints δ1(n, p), δ2(n, p).

1: Estimate β1
d1:2

, β2
d1:2

as in Algorithm 1.
2: γ̂i,1 = 0, if Di,1 ̸= d1, γ̂i,2 = 0 if (Di,1, Di,2) ̸= (d1, d2)
3: Estimate

γ̂1 = argmin
γ1

||γ1||2, s.t.
∥∥∥X̄1 −

1

n

n∑
i=1

γi,1Xi,1

∥∥∥
∞

≤ δ1(n, p),

1⊤γ1 = 1, γ1 ≥ 0, ∥γ1∥∞ ≤ log(n)n−2/3.

γ̂2 = argmin
γ2

||γ2||2, s.t.
∥∥∥ 1
n

n∑
i=1

γ̂i,1Hi,2 −
1

n

n∑
i=1

γi,2Hi,2

∥∥∥
∞

≤ δ2(n, p),

1⊤γ2 = 1, γ2 ≥ 0, ∥γ2∥∞ ≤ K log(n)n−2/3.

(10)

return µ̂(d1, d2) as in Equation (5).

4 Complete algorithm and theoretical guarantees

In this section, we present the complete algorithm with multiple time periods and formal

theoretical guarantees for estimation and inference.
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Algorithm 3 Dynamic covariate balancing (DCB): multiple time periods

Require: Observations {Yi,1, Xi,1, Di,1, · · · , Yi,T , Xi,T , Di,T}, treatment history (d1:T ), finite
parameters {K1,t}Tt=1, constraints δ1(n, p1), δ2(n, p2), · · · , δT (n, pT ).

1: Estimate β
(t)
d1:T

, running Algorithm 1 recursively for T (instead of two) periods.
2: Let γ̂i,0 = 1/n and t = 0;
3: for each t ≤ T − 1 do
4: γ̂i,t = 0, if Di,1:t ̸= d1:t
5: Estimate time t weights with

γ̂t = argmin
γt

n∑
i=1

γ2
i,t, s.t.

∥∥∥ 1
n

n∑
i=1

γ̂i,t−1Hi,t − γi,tHi,t

∥∥∥
∞

≤ K1,tδt(n, pt),

1⊤γt = 1, γt ≥ 0, ∥γt∥∞ ≤ log(n)n−2/3.

(11)

6: end for ▷ obtain T balancing vectors
return Estimate of the average potential outcome as in Equation (14)

4.1 Multiple time periods

Algorithm 3 generalizes our procedure to finite T periods. Let d1:T = (d1, · · · , dT ). Define

ATE(d1:T , d
′
1:T ) = µT (d1:T )− µT (d

′
1:T ), µT (d1:T ) = E

[
YT (d1:T )

]
. (12)

This estimand denotes the difference in potential outcomes for two treatment histories

d1:T , d
′
1:T . We define Ft =

(
D1, · · · , Dt−1, X1, · · · , Xt, Y1, · · · , Yt−1

)
the information at time

t after excluding the treatment assignment Dt. We denote

Hi,t =
[
Di,1, · · · , Di,t−1, Xi,1, · · · , Xi,t, Yi,1, · · · , Yi,t−1

]
∈ Rpt (13)

the vector containing information from time one to time t, after excluding the treatment

assigned in the present period Dt. Interaction components may also be considered, omitted

here for brevity. We let the potential history (as a function of the treatment history) be

Hi,t(d1:(t−1)) =
[
d1:(t−1), Xi,1:t(d1:(t−1)), Yi,1:(t−1)(d1:(t−1))

]
.

The following assumption generalizes Assumptions 1-3 from the two-period setting.

Assumption 4. For any d1:T ,∈ {0, 1}T , and t ≤ T ,

(A) (No-anticipation) The potential history Hi,t(d1:T ) is constant in dt:T ;

(B) (Sequential ignorability)
(
Yi,T (d1:T ), Hi,t+1(d1:(t+1)), · · · , Hi,T−1(d1:(T−1))

)
⊥ Di,t|Ft;
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(C) (Potential projections) For some β
(t)
d1:T

∈ Rpt ,

E
[
Yi,T (d1:T )|Di,1:(t−1) = d1:(t−1), Xi,1:t, Yi,1:(t−1)

]
= Hi,t(d1:(t−1))β

(t)
d1:T

.

Condition (A) imposes non-anticipation each period (Boruvka et al., 2018). Condition

(B) states that treatment assignments are randomized based on the past only. Condition

(C) states that the conditional expectation of the potential outcome at time T is linear in

Hi,t(d1:(t−1)). Identification follows similarly to Lemma 2.1, omitted for brevity.

For given weights γ̂1:T , and coefficients β̂(1:T ), we estimate µT (d1:T ) with

µ̂T (d1:T ) =
n∑

i=1

γ̂i,T (d1:T )Yi,T −
n∑

i=1

T∑
t=2

(
γ̂i,t(d1:T )− γ̂i,t−1(d1:T )

)
Hi,tβ̂

(t)
d1:T

−
n∑

i=1

(
γ̂i,1(d1:T )−

1

n

)
Xi,1β̂

(1)
d1:T

.

(14)

Coefficients are estimated recursively as in the two periods setting (see Algorithm 1).

Estimation of the weights follows from the following lemma.

Lemma 4.1. Suppose that γ̂i,T (d1:T ) = 0 if Di,1:T ̸= d1:T . Then

µ̂T (d1:T )− µT (d1:T ) =
T∑
t=1

(
γ̂t(d1:T )Ht − γ̂t−1(d1:T )Ht

)
(β

(t)
d1:T

− β̂
(t)
d1:T

)︸ ︷︷ ︸
(I1)

+ γ̂⊤T (d1:T )εT︸ ︷︷ ︸
(I2)

+

T∑
t=2

γ̂t−1(d1:T )
(
Htβ

(t)
d1:T

−Ht−1β
(t−1)
d1:T

)
︸ ︷︷ ︸

(I3)

(15)

where εi,t(d1:T ) = Yi,T (d1:T )−Hi,t(d1:(t−1))β
(t)
d1:T

.

The proof is in Appendix A.2. Lemma 4.1 decomposes the estimation error into three

components. First, (I1), depends on the estimation error of the coefficient and on balancing

properties of the weights. (I1) suggests imposing balancing conditions on∣∣∣∣∣∣γ̂t(d1:T )Ht − γ̂t−1(d1:T )Ht

∣∣∣∣∣∣
∞

each period. The components characterizing the estimation error are (I2) = γ̂T (d1:T )
⊤εT ,

and (I3). In the following lemma, we provide conditions such that (I3) is mean zero.
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Lemma 4.2. Let Assumption 4 hold. Suppose that the sigma algebra σ(γ̂t(d1:T )) ⊆ σ(Ft, Dt).

Suppose in addition that γ̂i,t(d1:T ) = 0 if Di,1:t ̸= d1:t. Then

E
[
γ̂i,t−1(d1:T )Htβ

(t)
d1:T

− γ̂i,t−1(d1:T )Ht−1β
(t−1)
d1:T

∣∣∣Ft−1, Dt−1

]
= 0.

The proof is in Appendix A.3.

4.2 Theoretical properties and inference

Next, we study the theoretical properties of the estimator in finite T periods. We consider a

high dimensional regime where the dimension covariates in each period p1, · · · , pT can grow

to infinity, as long as log(maxt ptn)/n
1/4 → 0.9 We impose the following conditions.

Assumption 5 (Overlap and tails’ conditions). Assume that P (Di,t = dt|Ft−1, Dt−1) ∈
(δ, 1 − δ), δ ∈ (0, 1) for each t ∈ {1, · · · , T}. Assume also that H

(j)
i,t , j ∈ {1, · · · , pt} is

Sub-Gaussian given Hi,t−1 and similarly X
(j)
i,1 , j ∈ {1, · · · , p1} is Sub-Gaussian.

The first condition is the overlap condition, standard in the causal inference literature

(Imbens and Rubin, 2015). The second condition is a tail restriction. The sub-gaussianity

restriction is imposed to obtain an exponential concentration of the covariates’ means. Such

a condition can be relaxed to assuming that the product of the inverse probability weights

times the covariates is sub-exponential – holding, for example, under the overlap restriction

and sub-exponential covariates – at the expense of more tedious derivations.

Theorem 4.3 (Existence of feasible weights). Let Assumptions 4, 5 hold. Consider δt(n, pt) ≥
c0n

−1/2log3/2(ptn) for a finite constant c0, and K2,t = 2K2,t−1bt for some constant bt < ∞.

Then, with probability ηn → 1, for each t ∈ {1, · · · , T}, T < ∞, for some N > 0, n > N ,

there exists a feasible γ̂∗
t , solving the optimization in Algorithm 3, where

γ̂∗
i,0 = 1/n, γ̂∗

i,t = γ̂∗
i,t−1

1{Di,t = dt}
P (Di,t = dt|Ft−1, Dt−1)

/ n∑
i=1

γ̂∗
i,t−1

1{Di,t = dt}
P (Di,t = dt|Ft−1, Dt−1)

.

Theorem 4.3 has important implications. Inverse probability weights tend to be unstable

in a small sample for moderately large periods. The algorithm thus finds weights that

minimize the small sample variance, with the IPW weights being one possible solution.

Corollary 1. Under the conditions in Theorem 4.3, for some N > 0, n > N , with probability

ηn → 1, n||γ̂t||2 ≤ n||γ̂∗
t ||2, for t ∈ {1, 2}.

9The dimension of covariates can grow either because of additional controls of because of transformations
of covariates (either case is allowed here).
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Corollary 1 formalizes the result that IPW weights have larger variance than balancing

weights (even in the presence of overlap).

In summary, Theorem 4.3 shows that the true propensity score is a feasible solution

for the proposed program. The theorem does not require researchers to know or estimate

the propensity score. Instead, the theorem shows that the program will be able to recover

the true propensity score (without knowledge of it) if the propensity score has the smallest

variance across all balancing weights. In settings where the score is unstable and has a large

variance, our method will balance covariates using more robust balancing weights.

Assumption 6. Let the following hold: for every t ∈ {1, · · · , T}, d1:T ∈ {0, 1}T ,

(i) maxt ∥β̂(t)
d1:T

− β
(t)
d1:T

∥1δt(n, pt) = op(1/
√
n), δt(n, pt) ≥ c0,tn

−1/4log(2ptn) for a finite

constant c0,t, maxt ∥β̂(t)
d1:T

− β
(t)
d1:T

∥1 = op(n
−1/4);

(ii) Let νi,t = (Hi,tβ
(t)
d1:T

− Hi,t−1β
(t−1)
d1:T

), εi,T = Yi,T − Hi,Tβ
(t)
d1:T

. For a finite constant C,

E[ε4i,T |Hi,T , Di,T ] < C, E[ν4
i,t|Hi,t−1, Di,t−1] < C, almost surely. In addition, Yi,T is a

sub-gaussian random variable.

(iii) Var(εi,T |Hi,T , Di,T ),Var(Hi,tβ
(t)
d1:T

−Hi,t−1β
(t−1)
d1:T

|Hi,t−1, Di,t−1) > umin, almost surely, for

some constant umin > 0.

Assumption 6 imposes the consistency in estimating the outcome models. Condition (i)

is attained for many high-dimensional estimators, such as the lasso method, under regularity

assumptions; see, e.g., Bühlmann and Van De Geer (2011). An example and derivation for

condition (i) for Lasso is included in Example A.1 (see Appendix A.4).10 The remaining

conditions impose moment assumptions, attained for sub-gaussian random variables.11

Theorem 4.4 (Parametric convergence rate). Let Assumptions 4 - 6 hold. Then, whenever

log(n(
∑

t pt))/n
1/4 → 0 with n, p1, · · · , pT → ∞,

µ̂T (d1:T )− µ2(d
′
1:T ) = OP

(
n−1/2

)
.

Theorem 4.4 shows that the proposed estimator guarantees parametric convergence rate

with high-dimensional covariates.

10Appendix A.4 shows that the restrictions on the degree of sparsity required in dynamic settings are
more stringent than those obtained in i.i.d. settings, with the error scaling faster in the sparsity degree. The
reason is because of recursively projecting conditional expectations, the estimation error cumulates over each
iteration. Appendix A.4 presents details about lasso.

11Sub-gaussianity of Yi,T imposes restrictions on the tail behavior of the endline outcome, and it is invoked
to consistently estimate the variance of the average treatment effect.
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Theorem 4.5 (Asymptotic Inference). Let Assumptions 4 - 6 hold. Then, whenever log(n
∑

t pt)/n
1/4 →

0, as n, p1, · · · , pT → ∞,

lim
n→∞

P
(∣∣∣√n

(
µ̂(d1:T )− µT (d1:T )

)
V̂T (d1:T )1/2

∣∣∣ > √
χT+1(α)

)
≤ α, (16)

where

V̂T (d1:T ) =n

n∑
i=1

γ̂2i,T (d1:T )(Yi,T −Hi,T β̂
(t)
d1:T

)2 +

T−1∑
t=1

n

n∑
i=1

γ̂2i,t(d1:t)(Hi,t+1β̂
t+1
d1:T

−Hi,tβ̂
t
d1:T

)2

+
1

n

n∑
i=1

(X̄1β̂
(1)
d1:T

−Xi,1β̂
(1)
d1:T

)2

and χT+1(α) is (1 − α) quantile of a chi-squared random variable with T + 1 degrees of

freedom.

Theorem 4.6 (Inference on ATE). Let the conditions in Theorem 4.5 hold. Let d1 ̸= d′1

Then, whenever log(npT )/n
1/4 → 0 with n, p1, · · · , pT → ∞,

lim
n→∞

P
(∣∣∣(V̂T (d1:T ) + V̂T (d

′
1:T ))

−1/2√n
(
µ̂(d1:T )− µ̂(d′1:T )−ATE(d1:T , d

′
1:T )

)∣∣∣ > √
χ2T+2(α)

)
≤ α.

The proof is in Appendix B.

Remark 2 (Tighter/Gaussian confidence bands). The confidence band depends on a chisquared

random variable with T + 1 degrees of freedom. In Appendix B.2 we show that under addi-

tional conditions we can get

(V̂T (d1:T ) + V̂T (d
′
1:T ))

−1/2
√
n
(
µ̂(d1:T )− µ̂(d′1:T )− ATE(d1:T , d

′
1:T )

)
→d N (0, 1)

and hence, tighter confidence bands. The assumptions needed is that n||γ̂t||22 converge almost

surely to (some) finite constant. This condition imposes restrictions on the degree of depen-

dence of the optimal weights, and holds for a bernoulli design. In addition, this condition

also holds whenever we parametrize the weights γ̂t(Hi,t) as a function of Hi,t and impose

appropriate restriction on the complexity of function classes Gt, γ̂t ∈ Gt, as for choices of

riesz representers in Chernozhukov et al. (2022).12 We do not use the critical quantile of a

standard Gaussian random variable in Theorem 4.6 because of the possible lack of almost

sure convergence of n||γ̂t||2, when either we have limited overlap in finite sample or we impose

no functional form restrictions on such weights (see Section 5 for more details).

12For example, it holds when balancing weights γi,t(Hi,t; θt) are smooth functions of arbitrary parameter

θt such that θ̂ solving Algorithm 3 is such that θ̂t →as θ
⋆ for some arbitrary θ⋆t .
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Remark 3 (Variance conditional on Xi,1). It is possible to use chi-squared distribution with

T (instead of T +1) degrees of freedoms if the estimand of interest is the ATE conditional on

baseline covariates Xi,1 instead of the unconditional ATE. In this case he variance should not

account for the last term 1
n

∑n
i=1(X̄1β̂

(1)
d1:T

−Xi,1β̂
(1)
d1:T

)2. We use such a variance estimator in

our numerical study and application, since in our application units are countries, motivating

our focus on the treatment effect conditional on countries’ baseline characteristics.

5 Guide to practice

The complete Algorithm 3 is implemented off-the-shelf in the R-package DynBalancing.

It requires researchers to specify four main parameters: the length h of the treatment his-

tory considered (i.e., carry-over effects), two treatment histories of length h, d(T−h):T , d
′
(T−h):T

to compare, the model used to estimate the coefficients (linear or fully interacted) as

in Algorithm 1, and whether to consider a pooled regression.

Choosing the length of the treatment history h In the presence of short panels,

selecting the length of the treatment history h = T is natural, i.e., studying a treatment

path that spans the entire panel. However, with long panels, this may reduce the effective

sample size used to estimate causal effects or be infeasible. By selecting a treatment history

h shorter than the number of periods T (i.e., h < T ), we estimate causal effects of the form

E
[
Yi,T

(
D1:(T−h), dT−h+1, · · · , dT

)]
− E

[
Yi,T

(
D1:(T−h), d

′
T−h+1, · · · , d′T

)]
(17)

for given treatment histories d(T−h):T , d
′
(T−h):T . Equation (17) estimates the effect of exposing

an individual to two different treatment histories only over the last h periods and average

over previous treatment assignments. Our analysis and estimation follow similarly to what

is discussed in Algorithm 3, with the difference that we construct balancing weights starting

from period T − h and proceed sequentially until time T (observable characteristics before

time T − h can be used as additional controls). Similarly, the estimator in Equation (14)

only uses information from time T − h to T , hence reducing the effective length of the

time periods. As in Imai et al. (2018), the focus on estimands in Equation (17) makes our

procedure robust to long panels.

Choice of the model specification (linear or fully interacted) The estimation

error ||β̂(t)
d1:T

− β
(t)
d1:T

||1 in T periods depends on modeling assumptions. For the fully inter-

acted model, ||β̂(t)
d1:T

− β
(t)
d1:T

||1 scales exponentially with T since this model requires running
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regressions over the subsample with treatment histories D1:t = d1:t. The linear model

avoids that the effective sample size shrinks exponentially in T but imposes homogeneity

restrictions of treatment effects as in Acemoglu et al. (2019). Therefore, researchers must

choose the model, considering the trade-off between the variance (increasing in the length of

the treatment history) and bias (due to treatment effect heterogeneity). Considering linear

specification with interaction terms with covariates is also possible when researchers expect

heterogeneity through observable characteristics.

Pooled regression When pooled is true, we consider a regression

Yi,t(d1:t) = β0 + β1dt + β2Yi,t−1(d1:(t−1)) +Xi,t(d1:(t−1))γ + τt + εi,t,

where τt denotes fixed effects, and an estimand as in Equation (17), pooling together effects

estimated in different periods. For given treatment history length h, it uses each observation

(i, t), t ≥ h (including information about past histories until time t − h) as separate obser-

vations, assuming stationarity in treatment effects. We then cluster standard errors at the

individual level to allow for correlation in time for each unit. In practice, we recommend

reporting results both from a pooled and not pooled regression as robustness checks.

Inference Theorem 4.5 and Remark 2 present two choices of critical values: a more conser-

vative choice using the square-root of a chi-squared critical value, and the Gaussian critical

value. Our package reports both. In our numerical studies (Section 6), the Gaussian quan-

tile performs well under strong sparsity and strong overlap, but its corresponding coverage

deteriorates as overlap decreases. Instead, the chi-squared critical quantile presents valid

coverage throughout all the designs. We recommend that researchers use Gaussian critical

quantiles in settings with moderate or good overlap of treatment assignments, such as when

treatments correlate strongly over time. We recommend the chi-squared quantiles otherwise.

Researchers can also choose between the conditional or unconditional variance on baseline

covariates. When researchers are interested in sample average causal effects, e.g., effects

conditional on countries’ characteristics, we recommend the former, otherwise the latter.

Remark 4 (Tuning parameters). Similarly to balancing in one-dimensional setting (Athey

et al., 2018), Algorithm 3 requires choosing tuning parameters for Equation (11). A complete

description is in Algorithm 4 and uses a data-adaptive procedure (i.e., researchers do not

need to specify the tuning parameters). In a nutshell, we choose δt(n, p) = log3/2(ptn)/n
1/2

(here pt is the dimension of covariates at time t) as prescribed by the theoretical analysis in

Section 4.2. To guarantee balance with many covariates, we first select the smallest constant
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K1 for covariates with non-zero estimated coefficients and second the smallest constant for

the remaining covariates until a feasible solution is reached. This choice minimizes the

estimator’s bias and, within the set of weighting estimators with the smallest bias, selects

the one with the smallest variance while prioritizing balance on covariates with non-zero

coefficients. Section 6 illustrates the benefits of this procedure.

Remark 5 (Computational complexity). The program in Algorithm 3 is a sequence of T

quadratic programs with linear constraints. Its computational complexity scales polynomi-

ally with n, p. Figure 6 provides an example showing that the computational time is between

a few seconds and a few minutes for T ∈ {1, · · · , 10} on a personal laptop (the running time

also includes running the data-adaptive procedure to choose the tuning parameters).

Remark 6 (Unbalanced panels). Our method allows for imbalanced panels since estima-

tion is performed sequentially (both for the coefficients and weights). If some observations

are missing over some periods, the algorithm will exclude such units when estimating the

coefficients and weights for that period(s) but not for the remaining ones.

6 Numerical Experiments

This section collects results from numerical experiments.We estimate

E
[
Yi,T (1)− Yi,T (0)

]
, T ∈ {2, 3}.

We let the baseline covariates Xi,1 be drawn from as i.i.d. N (0,Σ) with Σ(i,j) = 0.5|i−j|.

Covariates in the subsequent period are generated according to an auto-regressive model

{Xi,t}j = 0.5{Xi,t−1}j +N (0, 1), j = 1, · · · , pt. Treatments are drawn from a logistic model

that depends on all previous treatments and past covariates: Di,t ∼ Bern
(
(1+ eιi,t)−1

)
with

ιi,t = η

t∑
s=1

Xi,sϕ+

t−1∑
s=1

δs(Di,s − D̄s) + ξi,t, D̄s = n−1
n∑

i=1

Di,s (18)

and ξi,t ∼ N (0, 1), for t ∈ {1, 2, 3}. Here, η, δ controls the association between covariates

and treatment assignments. We consider values of η ∈ {0.1, 0.3, 0.5}, δ1 = 0.5, δ2 = 0.25.

We let ϕ ∝ 1/j, with ∥ϕ∥22 = 1, similarly to balancing conditions presented in Athey et al.

(2018). The larger η corresponds to weaker overlap (see Table 1).

We generate the outcome according to the following equations:

Yi,t(d1:t) =
t∑

s=1

(
Xi,sβ + λs,tYi,s−1 + τds

)
+ εi,t(d1:t), t = 1, 2, 3,
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Table 1: Summary statistics of the distribution of the propensity score in two and three
periods in a sparse setting with dim(X) = 300.

η = 0.1 η = 0.3 η = 0.5

T=2 T=3 T=2 T=3 T=2 T=3

Min 0.012 0.003 0.004 0.0002 0.001 0.00000

1st Quantile 0.126 0.049 0.105 0.031 0.079 0.018

Median 0.218 0.097 0.216 0.097 0.216 0.094

3rd Quantile 0.248 0.126 0.259 0.153 0.277 0.183

Max 0.352 0.175 0.377 0.226 0.429 0.286

where elements of εi,t(d1:t) are i.i.d. N (0, 1) and λ1,2 = 1, λ1,3, λ2,3 = 0.5. We consider

three different settings: Sparse with β(j) ∝ 1{j ≤ 10}, Moderate with moderately sparse

β(j) ∝ 1/j2 and the Harmonic setting with β(j) ∝ 1/j. We set ∥β∥2 = 1, τ = 1.

6.1 Methods

We consider the following competing methodologies. Augmented IPW, with known propen-

sity score and with estimated propensity score. The method replaces the balancing weights

in Equation (5) with the (estimated or known) propensity score. Estimation of the propen-

sity score is performed using a logistic regression (denoted as aIPWl) and a penalized logistic

regression as in Negahban et al. (2012) (denoted as aIPWh).13 For both AIPW and IPW

we consider stabilized inverse probability weights. We also compare to existing balancing

procedures for dynamic treatments. Namely, we consider Marginal Structural Model (MSM)

with balancing weights computed using the method in Yiu and Su (2018, 2020). The method

consists of estimating Covariate-Association Balancing weights CAEW (MSM) as in Yiu

and Su (2018, 2020).14 (We do not also compare to Imai and Ratkovic 2015 for MSM since

it is intractable in high-dimensions). We also consider “Dynamic” Double Lasso that es-

timates the effect of each treatment assignment separately, after conditioning on the present

covariate and past history for each period using the double lasso discussed in one period

setting in Belloni et al. (2014).15 Naive Lasso runs a regression controlling for covariates

and treatment assignments only. Sequential Estimation estimates the conditional mean

13See for example Nie et al. (2021) and Bodory et al. (2020) for a discussion on doubly-robust estimators.
14These methods consist of balancing covariates reweighted by marginal probabilities of treatments (esti-

mated with a logistic regression), and use such weights to estimate marginal structural model of the outcome
linear in past treatment assignments. We follow Section 3 in Yiu and Su (2020) for its implementation.

15See Lewis and Syrgkanis (2020) for related procedures.
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in each time period sequentially using the lasso method, and it predicts end-line potential

outcomes as a function of the estimated potential outcomes in previous periods. We also

consider two “intuitive” but biased estimators. We define DiD switchback as a difference-

in-differences estimator that takes the difference between the outcome at time T and the

outcome at time T − 1 for those units that switched from control to treatment in the last

period, subtracts the difference of the outcomes for time T and T − 1 for those units under

control for all periods. It then multiplies the estimated effect by the number of periods of in-

terest to make (since we are interested in the overall effect of being exposed to treatment for

all periods).16 Finally, we define Simple LP (Local Projection) the estimator that projects

YT onto baseline covariates Xi,1 and treatment Di,1 and take the coefficient multiplying Di,1

as the estimated effect, while penalizing the coefficients for Xi,1 via Lasso. For Dynamic

Covariate Balancing, DCB choice of tuning parameters is data adaptive, and it uses a grid-

search method discussed in Appendix C.17 We estimate coefficients as in Algorithm 1 for

DCB and (a)IPW, with a linear model in treatment assignments. Estimation of the penalty

for the lasso methods is performed via cross-validation.

6.2 Results

We consider dim(β) = dim(ϕ) = 100 and set the sample size to be n = 400. The regression

in the first period contains p1 = 101 covariates, in the second period p2 = 203 covariates,

and in the third p3 = 305 covariates.

In Table 2 we collect results for the average mean squared error for estimating the av-

erage treatment effect in two and three periods. Throughout all simulations, the proposed

method significantly outperforms any other competitor, with one single exception for T = 2,

good overlap and harmonic design. It also outperforms using known propensity score, con-

sistently with our findings in Theorem 4.3, where we show that the propensity score is a

feasible solution of DCB weights (and in the absence of knowledge of the propensity score).

Improvements are particularly significant when (i) overlap deteriorates; (ii) the number of

periods increases from two to three. This can also be observed in the panel at the bottom

of Figure 4, where we report the decrease in MSE (in logarithmic scale) when using our

procedure for T = 3. In Appendix D we present results with misspecified models.

In the top panel of Figure 4 we report the length of the confidence interval and the point

estimates. The length increases with the number of periods, and point estimates are more

16We note that one could consider different variants of difference in means or difference-in-differences
estimators. The reader may refer to De Chaisemartin and d’Haultfoeuille (2022) for a discussion.

17The grid-search procedure consists of finding the smallest feasible constraint-value through grid search,
while choosing more stringent constants for those variables whose estimated coefficients are non-zero.
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Table 2: Mean Squared Error (MSE) for estimating the average treatment effect of always vs
never being under treatment of Dynamic Covariate Balancing (DCB) across 200 repetitions
with sample size 400 and 101 variables in time period 1. This implies that the number of
variables in time period 2 and 3 are 203 and 304. Oracle Estimator is denoted with aIPW∗

whereas aIPWh(l) denote AIPW with high(low)-dimensional estimated propensity. CAEW
(MSM) corresponds to the method in Yiu and Su (2020), D.Lasso is adaptation of Double
Lasso (Belloni et al., 2014).

η = 0.1 η = 0.3 η = 0.5

sparse mod harm sparse mod harm sparse mod harm

T = 2

aIPW∗ 0.069 0.092 0.071 0.102 0.104 0.118 0.131 0.127 0.132
DCB 0.060 0.077 0.075 0.092 0.076 0.084 0.099 0.077 0.085
aIPWh 0.064 0.091 0.070 0.180 0.204 0.218 0.265 0.312 0.368
aIPWl 0.260 0.229 0.212 0.157 0.201 0.165 0.214 0.234 0.213
IPWh 2.37 1.78 2.80 10.19 6.49 11.72 15.25 8.09 16.67
Seq.Est. 0.932 1.333 0.692 1.388 1.787 1.152 1.759 1.795 1.664
Lasso 0.247 0.410 0.132 0.509 0.710 0.298 0.762 0.948 0.560
CAEW 0.432 0.444 0.517 1.934 1.274 1.974 3.376 2.168 4.423
Dyn.D.Lasso 0.124 0.118 0.256 0.208 0.147 0.430 0.218 0.153 0.554
DiD Switchback 2.06 1.71 1.60 14.52 6.98 20.72 38.79 6.98 52.48
Simple LP 1.28 1.40 1.37 1.613 1.682 1.573 1.777 1.689 1.808

T = 3

aIPW∗ 0.226 0.296 0.261 0.403 0.251 0.339 0.472 0.496 0.562
DCB 0.155 0.208 0.199 0.257 0.217 0.329 0.294 0.267 0.455
aIPWh 0.201 0.273 0.280 0.595 0.747 0.835 0.999 1.328 1.607
aIPWl 0.823 0.625 0.829 0.623 0.704 0.638 1.078 1.396 1.234
IPWh 11.03 8.09 12.84 34.65 20.34 39.37 47.65 23.30 45.47
Seq.Est. 2.608 4.016 2.316 3.722 5.269 3.818 5.279 6.829 5.467
Lasso 0.409 0.492 0.514 0.559 0.732 0.507 1.290 1.315 1.174
CAEW 3.580 2.446 4.279 18.50 12.07 22.85 30.07 18.71 33.01
Dyn.D.Lasso 0.471 0.344 0.679 0.694 0.378 1.182 0.964 0.383 1.594
DiD Switchback 24.9 27.98 20.52 21.07 7.503 38.33 59.23 22.15 89.07
Simple LP 7.38 7.54 7.38 8.180 8.154 8.294 9.131 9.087 9.217

accurate for a non-harmonic (more sparse) setting.

Finally, we report finite sample coverage of the proposed method, DCB in Table 3 for

estimating µ(1) and µ(1)−µ(0) (for T ∈ {2, 3}) in the first two panel with η = 0.5 (see Table

4 in the Appendix for the confidence intervals’ length).18 The former is of interest when the

effect under control is more precise and its variance is asymptotically neglegible compared

18Results for η ∈ {0.1, 0.3} present over-coverage of the chi-squared method, and correct or under-coverage
(albeit less severe than η = 0.5) when considering a Gaussian critical quantile.
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Table 3: Conditional average Coverage Probability of Dynamic Covariate Balancing (DCB)
over 200 repetitions, with η = 0.5 (poor overlap). Here, n = 400 and p = 100; implying that
the number of variables at time 2 and time 3 are 2p and 3p, respectively. Homoskedastic
and heteroskedastic estimators of the variance are denoted with Ho and He, respectively.
The first two panels use the square-root of the chi-squared critical quantiles as discussed in
Theorems 4.5, 4.6 (see Table 4 in the Appendix for the confidence intervals’ length) and the
last panel uses instead critical quantiles from the standard normal table (see Remark 2).

T = 2 T = 3

Sparse Moderate Harmonic Sparse Moderate Harmonic

Ho He Ho He Ho He Ho He Ho He Ho He

µ(1): 95% Coverage Probability

p=100 1.00 0.98 1.00 0.99 0.99 0.96 0.99 0.99 1.00 1.00 1.00 0.96

p=200 0.99 0.99 0.99 0.98 0.97 0.95 1.00 0.99 0.99 0.98 0.99 0.93

p=300 1.00 0.99 0.99 0.99 0.96 0.94 0.99 0.97 0.99 0.97 0.98 0.93

µ(1)− µ(0): 95% Coverage Probability

p=100 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

p=200 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00 0.97 0.96

p=300 1.00 1.00 1.00 1.00 0.98 0.97 1.00 0.99 1.00 0.99 0.99 0.97

µ(1)− µ(0): 95% Coverage Probability with Gaussian quantile

p=100 0.96 0.94 0.98 0.96 0.98 0.94 0.97 0.90 0.98 0.92 0.90 0.79

p=200 0.97 0.94 0.98 0.92 0.91 0.85 0.98 0.92 0.98 0.91 0.75 0.64

p=300 0.99 0.96 0.99 0.95 0.89 0.84 0.92 0.85 0.94 0.86 0.73 0.61

to the estimated effect under treatment (e.g., many more individuals are not exposed to

any treatment). The latter is of interest when both µ(1, 1) and µ(0, 0) are estimated from

approximately a proportional sample. In the third panel, we report coverage when instead a

Gaussian critical quantile (instead of the square root of a chi-squared quantile discussed in

our theorems) is used. We observe that our procedure can lead to correct (over) coverage,

while the Gaussian critical quantile leads to under-coverage in the presence of poor overlap

and many variables, but correct coverage with fewer variables and two periods only.

We compare DCB and AIPW with high dimensional covariates with a longer time period.

Namely, in Figure 5, we collect results for T ∈ {1, · · · , 10}. We generate data using a sparse

model, p = 100, n = 400 over two-hundred replications. The outcome at time t depends on

the contemporaneous treatment, covariates, and previous outcome at time t−1. To simulate

a scenario where a strong correlation occurs between treatments over a long time period, we
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Figure 4: Top panels collect the point estimate (crosses), minus the true effect of the treat-
ment, and confidence intervals of DCB for p = 100 across the three different designs. The
bottom panel reports the decrease in MSE (in logarithmic scale) of the proposed method
compared to the best competitor (excluding the one with known propensity score) for T = 3.

generate

E[Di,t|Dt−1, Xt] = (1− α)Di,t−1 + α(1 + eιi,t)−1,

where similarly to the propensity score model Equation (18), ιi,t = η
α
Xi,t−1ϕ + η

α
Xi,tϕ +

1
2
(Di,t−1 − D̄t−1) + ξi,t, ξi,t ∼ N (0, 1). Here η controls overlap together with α, where η/α

has a similar role of the overlap constant in previous simulations.19 In the figure we report

results for α ∈ {0.9, 0.7, 0.5} (denoted as “High, Medium and Low correlation” respectively),

and η ∈ {0.3, 0.5}. In Figure 5, we observe that for very strong time dependence between

treatments (i.e., there are limited or no dynamics in assignments) the two methods are

comparable. When instead, there are relatively more dynamics in treatment assignments the

proposed method significantly improves in mean-squared error, with larger improvements in

the presence of poorer overlap. In the Appendix, Figure 10 we provide results also for very

good overlap (η = 0.1), where the methods mostly provide comparable results on average.

Finally, in Figure 6 we presents an example of computational time of the method as

T varies, showing that the time for T ≤ 10 is between few seconds and ten minutes on a

personal computer. For T = 20 the computational time is 60 minutes (on a single core, 30

on two cores) in our empirical application.

19We take η/α as this plays approximately the same role of η in previous simulations from a simple linear
approximation of (1 + eιi,t)−1 with respect to η ≈ 0.
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Figure 5: Mean-squared error in log-scale. Simulations for T ≤ 10, p = 100, n = 400,
two-hundred replications. Here high-correlation denotes strong serial depedence between
treatment assignments with α = 0.9, medium with α = 0.7 and weak with α = 0.5. η ∈
{0.3, 0.5} for moderate and poor overlap, respectively.
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Figure 6: Example of cumulative computational time in minutes to run the first (one)
simulation on a personal laptop as T varies High-correlation denotes strong serial dependence
between treatments (α = 0.9), medium corresponds to α = 0.7 and weak to α = 0.5. We set
η = 0.1.

6.3 Additional numerical studies and misspecified model

In Appendix D we study settings with a misspecified outcome model, low dimensional co-

variates and settings where the signal of the coefficients decay in the spirit of Wüthrich and

Zhu (2023). We show that our findings in the current section are robust to these alternative
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designs. In particular, in contexts with misspecified models (Appendix D.1) we observe that

DCB outperforms AIPW, with a known propensity score. The main reason is due to the

instability of the inverse probability weights in dynamic settings. Because these weights

define the joint probability of treatment assignments, these can exhibit instability (poor

overlap) in small samples, increasing the variance of the AIPW estimator (which we observe

in Appendix D.1 as we decompose the bias and variance of each estimator). These findings

further motivate the advantages of DCB.

7 Empirical application

In this section, we present an empirical application for studying the effect of democracy on

GDP growth using data from Acemoglu et al. (2019). Acemoglu et al. (2019) studied dynamic

treatment effects of democracy under GDP growth under sequential ignorability (Assumption

1 in Acemoglu et al., 2019). Figure 7 illustrates the dynamics of treatments. Many units

switch treatment over time, violating standard event studies designs, and motivating an

approach for dynamic treatments, for example considered in Acemoglu et al. (2019). We

revisit the study of Acemoglu et al. (2019) and illustrate the advantages of our method.

7.1 Data and estimation

The data consist of an extensive collection of countries observed between 1960 and 2010.20 We

consider observations starting from 1989. After removing missing values, we run regressions

with 141 countries. The outcome is the log-GDP in the country i in period t as in Acemoglu

et al. (2019). We use the same treatment specification as in Acemoglu et al. (2019), which

is binary and constructed using a political index. We study the effect of exposing countries

at time t to democracy for in s years before (and including) t versus not exposing them

to democracy for the previous s years. Namely, the estimand is the s-long run effect of

democracy, after averaging over past assignments as discussed in Section 5.21 We let s ∈
{1, · · · , 20} to study the impact from one to twenty years of democracy.

For each country, we condition on lag outcomes in the past four years as in the preferred

specification of Acemoglu et al. (2019), and past four treatments. We consider a pooled

regression (see Section 5) and two alternative specifications. The first is parsimonious and

includes dummies for different regions (continents) and different intercepts for different peri-

ods. Note that, similarly to what discussed in Zubizarreta (2015), even with a parsimonious

20Data available at https://www.journals.uchicago.edu/doi/suppl/10.1086/700936.
21Formally, the estimand defines τs =

1
T

∑
t E

[
Yi,t(Di,(t−s):(−∞),1s)− Yi,t(Di,(t−s):(−∞),0s)

]
.
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Figure 7: The left panel illustrates the dynamics of treatments. The right panel provides
an example of dynamic selection into treatment where treatments may depend on past
treatments, outcomes and other past observables (allowed in our framework).

specification, residual balancing can substantially improve the finite sample performance of

the estimator, as we show in the right panel of Figure 8. The second one controls for the

past four outcomes, past four treatments, for the geographical region, and histories based on

colonial history and regimes types as defined in the data from Acemoglu et al. (2019).22 Note

that our specification does not include country fixed effects, as our (and Robins (1986)’s)

framework assumes that treatments are exogenous conditional on past information. To con-

trol for confounding bias that may arise from country specific characteristics (and time) our

second specification controls for a large vector of country’s characteristics. We therefore see

our second specification as more robust to possible confounding mechanisms. Coefficients

are estimated as in Algorithm 1 with model = linear.23

7.2 Results

Figure 8 collects our results. Democracy has a statistically insignificant effect over the first

few years and a statistically significant positive impact on long-run GDP growth after six

years. Point estimates are in sign and magnitude consistent with what found by Acemoglu

et al. (2019), and results are robust across the two specifications for DCB.

We compare our method to three alternative specifications: (i) the AIPW method that

uses the same estimation method we propose in Algorithm 1 for estimating the conditional

mean function, and the propensity score via penalized generalized linear models as in Ne-

gahban et al. (2012); (ii) the linear estimator reported by Acemoglu et al. (2019) (Table 2,

22To replicate the results, these are the columns of data in Acemoglu et al. (2019) named “Region 60”,
“Region DA,” “Region REG.”

23Note that in principle, it is possible to penalize only some but not all coefficients, in the spirit of group
lasso methods (Hastie et al., 2015). We omit this for brevity.
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Column 3), where dynamic effects are estimated by propagating the effect over past outcomes

at each period, as suggested by Acemoglu et al. (2019); the simple local projection, that

projects the outcome on the treatment and the past outcome s periods before, controlling for

country, time fixed effects and lagged outcome at time s (this specification follows similarly

to the regression specifications in macro-economic applications as in Auerbach et al., 2020).

The simple local projection approach reports the smallest point estimates compared to

all methods. This result is consistent with our theoretical discussion: local projections

average over the distribution of future assignments. Therefore, the causal effects estimated

by the local projection differ from the target long-run effect, which instead fixes future

treatment assignments. This difference illustrates the benefits of recursive projections in

the presence of dynamic selection into treatment, when the goal is to estimate long-run

treatment effects.24 The effect estimated as in Acemoglu et al. (2019) is larger than the

local projection method but significantly smaller than the effect estimated through DCB.

Therefore, the specification in Acemoglu et al. (2019) may capture some but not all the long-

run effects. After controlling for imbalance with DCB, average treatment effects are twice as

large. To investigate differences with (A)IPW methods, the right panel in Figure 8 presents

comparisons in terms of the imbalance over the lagged outcome at time t − 1 when using

balancing or inverse probability weights. As Acemoglu et al. (2019) note, “Besides controlling

for the fact that democratizations are more frequent after economic crises, the lags of GDP

per capita summarize the impact of a range of economic factors that affect both growth and

democracy, such as commodity prices, agricultural productivity, and technology. Indeed,

many of these economic factors should have an impact on future GDP, primarily through

their influence on current GDP.” Therefore, an imbalance in lagged GDP may suggest the

presence of bias. We report the relative improvement in absolute imbalance (average across

the potential outcomes under treatment and control) and observe substantial gain over using

inverse probability weights. Such gains illustrate the advantage of balancing in small sample.

Finally, Figure 9 complements Figure 8 showing instability of inverse probability weights.

24The simple local projection presents growing effects in the first few periods and a positive effect with
decreasing marginal effects for longer periods. This behavior can be explained by the positive treatment
correlations in Figure 7: because of positive treatment correlation, short-term effects may be driven by
positive future treatments, whereas long-term effects may be decreasing due to weaker correlation over time.
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8 Discussion

This paper studies the problem of inference on dynamic treatments via covariate balancing.

We consider a potential local projection model with high-dimensional covariates, and we

introduce novel balancing conditions that allow for the optimal
√
n-consistent estimation.

Simulations and empirical applications illustrate the method’s advantages.

Several questions remain open. First, the asymptotic properties crucially rely on cross-

sectional independence while allowing for general dependence over time. Future work should

addres extensions where cross-sectional i.i.d.-ness does not necessarily hold. Second, our

asymptotic results assume a fixed period. Future work should study settings with large T

(see e.g., Section 5). It would also be interesting to study whether conditions on overlap

might be replaced by alternative (weaker) assumptions.

Finally, dynamic treatment regimes and parallel trends impose different (and comple-

mentary) assumptions for causal inference. Reconciling these two frameworks and proposing

methods that are robust to either condition remains an open research question.
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We organize the Appendix as follows. In Appendix A, we present the main lemmas

(including sufficient conditions for the convergence rate of lasso). We present proofs of the

algorithms in Appendix B. Appendix C presents additional algorithms. Appendix D presents

additional simulations, and Appendix E an additional empirical application.

Throughout our discussion, we say that y ≲ x if the left-hand side is less or equal to the

right-hand side up to a multiplicative constant term. We will refer to βt as β
(t)
d1:T

whenever

clear from the context. Recall that when we omit the script i, we refer to the vector of all

observations. We define

νi,t(d1:T ) = Hi,t+1β
(t+1)
d1:T

−Hi,tβ
(t)
d1:T

, εi,T (d1:T ) = Yi,T (d1:T )−Hi,Tβ
(T )
d1:T

.

and ν̂i,t for estimated coefficients (omitting the argument (d1:T ) for notational convenience).

Let νi,0 = Xi,1β
1 − E[Xi,1]β

1 and ν̂i,0 = Xi,1β̂
1 − X̄1β̂

1. We will refer to γ̂i,t(d1:T ) as the

weights to estimate µT (d1:T ) as in Algorithm 3. We omit the argument d1:T in γ̂i,t(·), νi,t(·)
whenever clear from the context. We denote σ(X) the sigma-algebra generated by a random

variable X.

Appendix A Lemmas

A.1 Proof of Lemma 2.1

The first equation in Lemma 2.1 is a direct consequence of condition (A) in Assumption 2,

and the linear model assumption (Assumption 3). Consider the second equation in Lemma

2.1. By condition (B) in Assumption 2, we have

E
[
Yi,2(d1, d2)

∣∣∣Xi,1

]
= E

[
Yi,2(d1, d2)

∣∣∣Xi,1, Di,1 = d1

]
.

Using the law of iterated expectations (since Xi,1 is measurable with respect to Hi,2)

E
[
Yi,2(d1, d2)

∣∣∣Xi,1, Di,1 = d1

]
= E

[
E[Yi,2(d1, d2)|Hi,2, Di,1 = d1]|Xi,1, Di,1 = d1

]
.

Using condition (A) in Assumption 2, we have

E[Yi,2(d1, d2)|Hi,2, Di,1 = d1] = E[Yi,2(d1, d2)|Hi,2, Di,1 = d1, Di,2 = d2]

the proof completes as E[Yi,2(d1, d2)|Hi,2, Di,1 = d1, Di,2 = d2] = E[Yi,2|Hi,2, Di,1 = d1, Di,2 =

d2] as a consequence of condition (A) in Assumption 2.
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A.2 Proof of Lemma 4.1

We prove the main lemmas for multiple periods as the two-periods case is a special case.

Throughout the proof we omit the argument d1:T of γ̂t(d1:T ) for notational convenience.

Recall that γ̂i,T = 0 if Di,1:T ̸= d1:T . Therefore,

γ̂i,TYi,T = γ̂i,TYi,T (d1:T ) = γ̂i,T (Hi,Tβ
T
d1:T

+ εi,T ).

We can write
n∑

i=1

(
γ̂i,TYi,T −

T∑
t=2

(γ̂i,t − γ̂i,t−1)Hi,tβ̂
t
d1:T

− (γ̂i,1 −
1

n
)Xi,1β̂

1
d1:T

)
=

n∑
i=1

(
γ̂i,THi,Tβ

T
d1:T

−
T∑
t=2

(γ̂i,t − γ̂i,t−1)Hi,tβ̂
t
d1:T

− (γ̂i,1 −
1

n
)Xi,1β̂

1
d1:T

)
+ γ̂⊤T εT .

Consider first the term

n∑
i=1

(γ̂i,THi,Tβ
T
d1:T

− (γ̂i,T − γ̂i,T−1)Hi,T β̂
T
d1:T

) = (γ̂THT − γ̂T−1HT )(β
T
d1:T

− β̂T
d1:T

) + γ̂T−1HTβ
T
d1:T

.

For any s > 1,
n∑

i=1

(γ̂i,s − γ̂i,s−1)Hi,sβ̂
s
d1:T

= (γ̂sHs − γ̂s−1Hs)(β̂
s
d1:T

− βs
d1:T

) + γ̂sHsβ
s
d1:s − γ̂s−1Hsβ

s
d1:s .

For s = 1, it follows
n∑

i=1

(γ̂i,1 −
1

n
)Xi,1β̂

1
d1:T

= (γ̂1X1 − X̄1)(β̂
1
d1:T

− β1
d1:T

) + γ̂1X1β
1
d1:s − X̄1β

1
d1:s .

Therefore, we can write

n∑
i=1

(
γ̂i,TYi,T −

T∑
t=2

(γ̂i,t − γ̂i,t−1)Hi,tβ̂
t
d1:T

− (γ̂i,1 −
1

n
)Xi,1β̂

1
d1:T

)
= (γ̂THT − γ̂T−1HT )(β

T
d1:T

− β̂T
d1:T

) +

T−1∑
s=2

(γ̂sHs − γ̂s−1Hs)(β
s
d1:T

− β̂s
d1:T

) + (γ̂1X1 − X̄1)(β
1
d1:T

− β̂1
d1:T

)

+ γ̂THTβ
T
d1:T

+ γ⊤T εT −
[ T−1∑

s=2

γ̂s+1Hsβ
s
d1:s − γ̂sHsβ

s
d1:s

]
− γ̂1X1β

1
d1:s + X̄1β

1
d1:s .

The proof completes after collecting the desired terms.

A.3 Proof of Lemma 4.2

Since γ̂i,t(d1:T ) is equal to zero if Di,1:t ̸= d1:t we can focus to the case where Di,1:t = d1:t.

Since weights at time t− 1 are measurable with respect to Ft−1, Dt−1, we only need to show

E[γ̂i,t−1(d1:T )Htβ
t
d1:T

|Ft−1, D−i,t−1, Di,(1:(t−1)) = d1:(t−1)] = γ̂i,t(d1:T )Ht−1β
t−1
d1:T

. (19)
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On the event that Di,(1:(t−1)) ̸= d1:(t−1) the expression is zero on both sides and the result

trivially holds. Therefore, we can implicitely assume that Di,(1:(t−1)) = d1:(t−1) since otherwise

the result trivially holds. Under Assumption 4 we can write

E[γ̂i,t−1(d1:T )Htβ
t
d1:T

|Ft−1, Dt−1] = E
[
γ̂i,t−1(d1:T )E[Yi,T (d1:T )|Ft, Dt]

∣∣∣Ft−1, Dt−1

]
= γ̂i,t−1(d1:T )E[Yi,T (d1:T )|Ft−1, Dt−1]

(20)

by the tower property of the expectation and the definition of Ft. Now notice that under

Assumption 4 (B), E[Yi,T (d1:T )|Ft−1, Dt−1] = E[Yi,T (d1:T )|Ft−1]. Therefore

γ̂i,t−1(d1:T )E[Yi,T (d1:T )|Ft−1] = γ̂i,t−1(d1:T )Hi,t−1β
t−1
d1:(t−1)

. (21)

A.4 Sufficient conditions for lasso

In this section we provide sufficient conditions for the convergence rate of lasso in two periods

as in Assumption 6 (i). T -periods follows similarly.

Lemma A.1 (Sufficient conditions for Lasso). Suppose that ||H2||∞, ||X1||∞ are uniformly

bounded almost surely and ||β(2)
d1:2

||0, ||β(1)
d1:2

||0 ≤ s, ||β(2)
d1:2

||∞, ||β(1)
d1:2

||∞ ≤ s. Suppose that H2, X1

both satisfy the restricted eigenvalue assumption, and the column normalization condition

(Negahban et al., 2012).25 Suppose that β̂
(1)
d1:2

, β̂
(2)
d1:2

are estimated with Lasso as in Algorithm 1

with a full interaction model and with penalty parameter λn ≍ s
√
log(p)/n. Let Assumptions

1 - 3 hold. Let ε2(d1:2)|H2 be subgaussian almost surely and ν1(d1)|X1 be sub-gaussian almost

surely. Then for t ∈ {1, 2},∣∣∣∣∣∣β̂(t)
d1:2

− β
(t)
d1:2

∣∣∣∣∣∣
1
= Op

(
s2
√

log(p)/n
)
.

Therefore,

∥β̂(t)
d1:2

− β
(t)
d1:2

∥1δt(n, p) = op(1/
√
n),

for δt(n, p) ≍ log(np)/n1/4 and s2 log3/2(np)/n1/4 = O(1).

The proof is discussed below and follows similarly to Negahban et al. (2012), with minor

modifications. The above result provides a set of sufficient conditions such that Assumption

6 (i) holds for a feasible choice of δt. Interestingly, the estimation error propagates each

period through stricter restrictions on the sparsity parameter s compared to the standard

25Sufficient conditions that guarantee that the restricted eigenvalue assumption holds are discussed in
(Negahban et al., 2012).
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lasso method (whose error scales with
√
s instead of s). The reason is because of the recursive

approach.26

Proof. The result for ∣∣∣∣∣∣β̂2
d1:2

− β2
d1:2

∣∣∣∣∣∣
1
= Op

(
s
√

log(p)/n
)

follows verbatim from Negahban et al. (2012) Corollary 2. For the result for β̂1
d1:2

it suffices

to notice, following the same argument from Negahban et al. (2012) (Corollary 2), that∣∣∣∣∣∣β̂1
d1:2

− β1
d1:2

∣∣∣∣∣∣
1
= O(sλn), for λn ≥

∣∣∣∣∣∣ 1
n
X⊤

1 (H2β̂
2
d1:2

−X1β
1
d1:2

)
∣∣∣∣∣∣
∞
,

since here we used the estimated outcome H2β̂
2
d1:T

as the outcome of interest in our estimated

regression instead of the true outcome.27 The upper bound as a function of λn follows directly

from Theorem 1 in Negahban et al. (2012).28 We note that we can write∣∣∣∣∣∣ 1
n
X⊤

1 (H2β̂
2
d1:2

−X1β
1
d1:2

)
∣∣∣∣∣∣

∞
≤

∣∣∣∣∣∣ 1
n
X⊤

1 ν1

∣∣∣∣∣∣
∞
+
∣∣∣∣∣∣ 1
n
X⊤

1 (H2β̂
2
d1:2

−H2β
2
d1:2

)
∣∣∣∣∣∣

∞

=
∣∣∣∣∣∣ 1
n
X⊤

1 ν1

∣∣∣∣∣∣
∞
+
∣∣∣∣∣∣ 1
n
X⊤

1 H2(β
2
d1:2

− β̂2
d1:2

)
∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣ 1
n
X⊤

1 ν1

∣∣∣∣∣∣
∞
+ ||X1||∞||H2||∞||β2

d1:2
− β̂2

d1:2
||1.

We now study each component separately. By sub-gaussianity, since E[ν1|X1] = 0 by As-

sumption 3, we have for all t > 0, by Hoeffding inequality and the union bound,

P
(∣∣∣∣∣∣ 1

n
X⊤

1 ν1

∣∣∣∣∣∣
∞

> t
∣∣∣X1

)
≤ p exp

(
−M

t2n

s

)
for a finite constant M . This result follows since ν1 ≤ ||β1||1||X(j)

1 ||∞ ≤ Ms. It implies that∣∣∣∣∣∣ 1
n
X⊤

1 ν1

∣∣∣∣∣∣
∞

= Op(
√

s log(p)/n)

The second component instead is Op(s
√
log(p)/n) by the bound on ||β2

d1:2
− β̂2

d1:2
||1. This

complete the proof. Finally, observe also that the same argument follows recursively for any

26A comprehensive analysis of lasso under mediation analysis goes beyond the scope of this paper. However,
we conjecture that improvements with respect to the sparsity parameter cannot be attained due to error
propagation.

27Formally, here to compute R∗(∇L(θ∗)) in Negahban et al. (2012)’s notation we need to account for the
loss function to depend on the estimated outcome.

28Note that Theorem 1 in Negahban et al. (2012) does not depend on the distribution of the data and is
a deterministic statement which holds under strong convexity at the true regression parameter. For a linear
model, strong convexity is satisfied under the restricted eigenvalue assumption which does not depend on
the regression parameter.
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finite T , with the estimation error depending on T .

A.5 Auxiliary Lemmas

In the lemmas below we will refer to a, c0, C as finite constants.

Lemma A.2 (Existence of Feasible γ̂1). Suppose that X
(j)
i,1 is subgaussian for all j ∈

{1, · · · , p1}, Xi,1 ∈ Rp1. Suppose that for d1 ∈ {0, 1}, P (Di,1 = d1|Xi,1) ∈ (δ, 1 − δ), for

some δ ∈ (0, 1). For finite constants c0, C < ∞, with probability at least 1 − 5/n, for

log(2np1)/n ≤ c0, δ1(n, p1) ≥ C
√

2 log(2np1)/n, there exists a feasible γ̂1 solving Algorithm

3. In addition,

lim
n→∞

P
(
n||γ̂1||22 ≤ E

[ 1

P (Di,1 = d1|Xi,1)

])
= 1.

Proof of Lemma A.2. This proof follows similarly to the one-period setting in Athey et al.

(2018).

Feasible guess To prove existence of a feasible weight, we use a feasible guess. We prove

the claim for a general d1 ∈ {0, 1}. Consider first

γ̂∗i,1 =
1{Di,1 = d1}

nP (Di,1 = d1|Xi,1)

/( 1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

)
︸ ︷︷ ︸

(D)

.
(22)

(D) is bounded away from zero For the guess in Equation (22) to be well-defined,

we need that the denominator is bounded away from zero. We now provide bounds on the

denominator. Since P (Di,1 = d1|Xi,1) ∈ (δ, 1− δ) by Hoeffding inequality

P
(∣∣∣ 1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

− 1
∣∣∣ > t

)
≤ 2 exp

(
− nt2

2a2

)
,

for a finite constant a that only depends on the overlap constant δ. With probability at least

1− 1/n,
1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

> 1−
√

2a2 log(2n)/n. (23)

Therefore for n large enough such that
√

2a2 log(2n)/n < 1 − κ, taking some κ ∈ (0, 1),

weights are finite with probability at least 1− 1/n.

45



Weights sum up to one and satisfies O(n−2/3) constraint The weights in Equation

(22) sum up to one and with probability at least 1− 1/n

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)

≲ n−2/3 ⇒ γ∗
i,1 ≤ K2,1n

−2/3

for a constantK2,1, where the first inequality follows by the overlap assumption that P (Di,1 =

d1|Xi,1) ∈ (δ, 1− δ), and the second by Equation (23).

First constraint in Algorithm 3 We are left to show that the first constraint in Algo-

rithm 3 is satisfied.

Under Assumption 4, E
[
1
n

∑n
i=1

1{Di,1=d1}X(j)
i,1

P (Di,1=1|Xi,1)
|X1

]
= X̄

(j)
1 . In addition, since Xi,1 is sub-

gaussian, and 1/P (Di,1 = d1|Xi,1) is uniformly bounded,

P
(∣∣∣∣∣∣X̄1 −

1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = 1|Xi,1)

Xi,1

∣∣∣∣∣∣
∞

> t
)
≤ p12 exp

(
− nt2

2a2

)
for a finite constant a2. With trivial rearrangement, with probability 1− 1/n,

∣∣∣∣∣∣X̄1 −
1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = 1|Xi,1)

Xi,1

∣∣∣∣∣∣
∞

≤ a
√

2 log(2np)/n (24)

Consider now the denominator (D) in Equation (22). We have shown that with probability

1− 1/n, for a finite constant a < ∞,

∣∣∣ 1
n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

− 1
∣∣∣ ≤ 2a

√
log(2n)/n. (25)

Therefore, with probability 1− 2/n,

∣∣∣∣∣∣X̄1 −
1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣X̄1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

− 1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣X̄1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

+ X̄1 − X̄1 − 1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣X̄1 − 1

n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

+
2a

√
log(2n)/n

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

≤
a
√
2 log(2np)/n+ 2a

√
log(2n)/n

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

,

(26)
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where the first inequality follows by the triangular inequality and by concentration of the

term 1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

around one at exponential rate as in Equation (25). The second

inequality follows by concentration of the numerator as in Equation (24). With probability

1−1/n, the denominator (D) is bounded away from zero. Therefore for a universal constant

C < ∞,29

P
(∣∣∣∣∣∣X̄1 −

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

≤ Ca
√
2 log(2np)/n

)
≥ 1− 3/n. (27)

Bound on ||γ̂||22 We are left to provide bounds on ||γ̂1||22. For n large enough, with proba-

bility at least 1− 5/n, ||γ̂1||22 ≤ ||γ̂∗
1 ||22 since γ̂∗

1 is a feasible solution. By overlap, the fourth

moment of 1/P (Di,1 = d1|Xi,1) is bounded. By the strong law of large numbers and Slutsky

theorem,

n||γ̂∗1 ||22 =
n∑

i=1

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)2

/( n∑
i=1

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)

)2
→as

E[ 1{Di,1=d1}
P (Di,1=d1|Xi,1)2

]

E[ 1{Di,1=d1}
P (Di,1=d1|Xi,1)

]2
< ∞.

(28)

which completes the proof.

Lemma A.3 (Existence of a feasible γ̂t). Let

Zi,t(dt) =
1{Di,t = dt}

P (Di,t = dt|Yi,1, · · · , Yi,t−1, Xi,1, · · · , Xi,t−1, Di,1, · · · , Di,t−1)
.

Let Assumption 5 hold and let for finite constants c0, c̄,

δt(n, pt) ≥ c0
log3/2(ptn)

n1/2
, and K2,t = 2K2,t−1c̄.

Then with probability ηn → 1, for some N > 0, n ≥ N , there exists a feasible γ̂∗
t solving the

optimization in Algorithm 3, where

γ̂∗i,t = γ̂i,t−1Zi,t(dt)
/ n∑

i=1

γ̂i,t−1Zi,t(dt)

In addition,

lim
n→∞

P
(
n||γ̂t||22 ≤ Ct

)
= 1 (29)

for a constant 1 ≤ Ct < ∞ independent of (pt, n).

Proof of Lemma A.3. The proof follows by induction. By Lemma A.2 we know that there

exist a feasible γ̂1, with limn→∞ P (n||γ̂1||22 ≤ C1) = 1, for some finite C1 < ∞. Suppose now

29Here 3/n follows from the union bound.
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that there exist feasible γ̂1, ..., γ̂t−1, such that

lim
n→∞

P (n||γ̂s||22 ≤ Cs) = 1 (30)

for some finite constant Cs < ∞ depends on s, and for all s < t. We want to show that the

statement holds for γ̂t. We find γ∗
t that satisfies the constraint, with

γ̂∗
i,t = γ̂i,t−1

1{Di,t = dt}
P (Di,t = dt|Hi,t)

/( n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

)
. (31)

We break the proof into several steps.

Finite and Bounded Weights To show that such weights are finite, with high proba-

bility, we need to impose bounds on the numerator and the denominator of the weights in

Equation (31). We want to bound for a finite constant C̄ < ∞,

P
({

max
i∈{1,...,n}

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> C̄n−2/3K2,t−1

}⋃{ n∑
i=1

γ̂i,t
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> ϵ

})
≤ P

(
max

i∈{1,...,n}
γ̂i,t−1

1{Di,t = dt}
P (Di,t = dt|Hi,t)

> C̄n−2/3K2,t−1

)
︸ ︷︷ ︸

(i)

+P
( n∑

i=1

γ̂i,t
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> ϵ

)
︸ ︷︷ ︸

(ii)

.

Bound on (i) We start by (i). Observe first that we can bound

max
i∈{1,...,n}

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
≤ n−2/3K2,t−1 max

i∈{1,...,n}

1{Di,t = dt}
P (Di,t = dt|Hi,t)

≤ K2,t−1C̄n−2/3

for a finite constant C̄ by strong overlap (Assumption 5).

Bound on (ii) We now provide bounds on (ii). Since σ(Ht−1) ⊆ σ(Ht)

E
[ n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

]
= E

[
E
[ n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

∣∣∣Ht−1

]]
= E

[ n∑
i=1

γ̂i,t−1E
[
E
[ 1{Di,t = dt}
P (Di,t = dt|Hi,t)

∣∣∣Ht

]∣∣∣Ht−1

]]
=

n∑
i=1

γ̂i,t−1 = 1.

Let Ct−1 be the upper limit on n||γ̂t−1||22, and let

c := 1
/
Ct−1 ηn,t := P (||γ̂t−1||22 ≤ 1/(cn)), (32)
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for some constant c, which depends on t − 1 (the dependence with t − 1 is suppressed for

expositional convenience). Observe in addition that ηn,t → 1 by the induction argument (see

Equation (30)). We write for a finite constant a, for any h > 0

P
(∣∣∣ n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1

∣∣∣ > h
)

≤ P
(∣∣∣ n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1

∣∣∣ > h
∣∣∣||γ̂t−1||22 ≤ 1/(cn)

)
ηn,t + (1− ηn,t)

≤ 2 exp
(
− ah2

2||γ̂t−1||22

∣∣∣||γ̂t−1||22 ≤ 1/(cn)
)
ηn,t + (1− ηn,t)

≤ 2 exp
(
− ch2an

2

)
ηn,t + (1− ηn,t).

(33)

The third inequality follows from the fact that γ̂t−1 is measurable with respect to Ht−1 and
1{Di,t=dt}

P (Di,t=dt|Hi,t)
is sub-gaussian conditional on Hi,t−1 (since uniformly bounded). Therefore with

probability at least 1− κ,

∣∣∣ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1

∣∣∣ ≤ √
2 log(2ηn,t/(κ+ ηn,t − 1))/(acn). (34)

By setting κ = ηn,t/n+ (1− ηn,t), with probability at least 1− ηn,t/n+ (1− ηn,t),

∣∣∣ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1

∣∣∣ ≤ √
2 log(2n)/acn,

and hence the denominator is bounded away from zero for n large enough (recall that

ηn,t → 1 by induction).

First Constraint in Algorithm 3 We now show that the proposed weights in Equation

(31) satisfy the first constraint in Algorithm 3. The second constraint trivially holds, while

the third follows from the “finite and bounded weights” argument discussed in the paragraph

above. We write

E
[ n∑

i=1

γ̂i,t−1H
(j)
i,t −

n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
H

(j)
i,t

]
= E

[
E
[ n∑

i=1

γ̂i,t−1H
(j)
i,t −

n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
H

(j)
i,t

∣∣∣Ht

]]
= 0.
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We want to show concentration. We write for any h > 0,

P
(∣∣∣∣∣∣ n∑

i=1

γ̂i,t−1Hi,t −
n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
Hi,t

∣∣∣∣∣∣
∞

> h
)

≤ P
(∣∣∣∣∣∣ n∑

i=1

γ̂i,t−1Hi,t −
n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
Hi,t

∣∣∣∣∣∣
∞

> h
∣∣∣||γ̂t−1||22 ≤ 1/cn

)
ηn,t︸ ︷︷ ︸

(I)

+(1− ηn,t)︸ ︷︷ ︸
(II)

,

where ηn,t = P (||γ̂t−1||22 ≤ 1/cn) for some constant c (that depends on t− 1). We study (I),

whereas, by the induction argument (II) → 0 (Equation (30)).

Bound on (I) For a constant c̄ < ∞, sub-gaussianity of Hi,t|Ht−1 and overlap, we can

write for any λ, h > 0,

(I) ≤
p∑

j=1

E
[
E
[
exp

(
λc̄||γ̂t−1||22 − λh

)
|Ht−1, ||γ̂t−1||22 ≤ 1/cn

]∣∣∣||γ̂t−1||22 ≤ 1/cn
]
ηn,t. (35)

Since γ̂t−1 is measurable with respect to Ht−1, we can write

(35) ≤ ηn,tpt exp
(
λ2/(cn)− λh

)
. (36)

Choosing λ = hcn/2 we obtain that the above equation converges to zero as log(pt)/n = o(1).

After trivial rearrangement, with probability at least 1− (1−ηn,t)−1/n (recall that ηn,t → 1

by induction) ,

∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t −
n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
Hi,t

∣∣∣∣∣∣
∞

≲
√

log(npt)/n. (37)

As a result, we can write

∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t −
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)
Hi,t∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣∑n

i=1 γ̂i,t−1Hi,t

∑n
i=1 γ̂i,t−1

1{Di,t=dt}
P (Di,t=dt|Hi,t)

−
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)
Hi,t∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞

≲
∣∣∣∣∣∣∑n

i=1 γ̂i,t−1Hi,t

(
1−

∑n
i=1 γ̂i,t−1

1{Di,t=dt}
P (Di,t=dt|Hi,t)

)
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(l)

+
∣∣∣∣∣∣∑n

i=1 γ̂i,t−1Hi,t

(
1− 1{Di,t=dt}

P (Di,t=dt|Hi,t)

)
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(ll)

.
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Observe now that the denominators of the above expressions are bounded away from zero

with high probability as discussed in Equation (34). The numerator of (ll) is bounded by

Equation (37). We are left with the numerator of (l). Note first that

E
[ n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

∣∣∣Hi,t

]
= 1.

We can write∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t

(
1−

n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

)∣∣∣∣∣∣
∞

≤ max
k

∣∣∣ n∑
i=1

γ̂i,t−1H
(k)
i,t

∣∣∣︸ ︷︷ ︸
(j)

∣∣∣1− n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

∣∣∣︸ ︷︷ ︸
(jj)

.

Here (jj) is bounded as in Equation (34), with probability 1 − 1/n at a rate
√

log(n)/n.

The component (j) instead is bounded as

(j) ≤ max
k,i

|H(k)
i,t | ≲ log(ptn)

with probability 1 − 1/n using subgaussianity of H
(k)
i,t (Wainwright, 2019). Therefore, all

constraints in Algorithm 3 are satisfied with probability converging to one.

Finite Norm We now need to show that Equation (29) holds. With probability converging

to one,

n||γ̂t||22 ≤ n||γ̂∗
t ||22 =

n∑
i=1

nγ̂∗2
i,t−1

1{Di,t = dt}
P (Di,t = dt|Hi,t)2

/( n∑
i=1

γ̂∗
i,t−1

1{Di,t = dt}
P (Di,t = dt|Hi,t)

)2

.

The denominator converges in probability to one by Equation (34). The numerator can

instead be bounded by n||γ∗
t−1||2 up-to a finite multiplicative constant by Assumption 5. By

the recursive argument n||γ∗
t ||2 = Op(1).

Lemma A.4. The weights solving the optimization problem in Algorithm 3 are such that

||γ̂t||22 ≥ 1/n.

Proof. Observe that for either algorithms, weights sum to one. The minimum under this

constraint only is obtained at γ̂i,t = 1/n for all i concluding the proof.

Lemma A.5 (Sub-gaussianity). Suppose that Yi,T is a sub-gaussian random variable. Then

εi,T , νi,t, t ∈ {0, · · · , T} for finite T are also sub-gaussian random variables.

Proof of Lemma A.5. First, note that for generic random variables Z,X, E[Z|X] is sub-

gaussian if Z is sub-gaussian. The reason is because E[Z|X] is a contraction in Lp spaces.
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Because subgaussianity is satisfied if ||Z||p < KPpp/2 for a constant K, it follows that

E[Z|X] is subgaussian as ||E[Z|X]||p ≤ ||Z||p. In addition, for two sub-gaussian random

variables X1, X2, X1 + X2 is also sub-gaussian. To show this we can use the definition of

sub-gaussianity using the moment generating function. In particular, for any λ > 0, we have

E[eλ[(X1+X2)−E[X1+X2]]] ≤
√
E[e2λ(X1−E[X1])]

√
E[e2λ(X2−E[X2])]. The result directly follows from

the definition of sub-gaussianity using the moment generating function (Wainwright, 2019).

Lemma A.5 directly follows from these two properties as it is simple to show that εi,T , νi,t

are defined as sums and differences of sub-gaussian random variables.

Appendix B Proofs of the Main Theorems

Proof of Theorem 4.3

Theorem 4.3 is a direct corollary of Lemmas A.2 and A.3.

Proof of Theorem 4.5

Theorem 4.4 is a direct corollary of Theorem 4.5.

Weights do not diverge to infinity First note that by Lemmas A.2, A.3, there exist a

γ̂∗
t such that for N large enough, with probability converging to one, for some N > 0, and

n > N

n||γ̂t||22 ≤ n||γ̂∗
t ||22 = Op(1). (38)

Similarly, n
∑n

i=1 γ
2
i,tVar(νi,t|Hi,t) = Op(1) and n

∑n
i=1 γ

2
i,TVar(εi,T |FT ) = Op(1) since the

conditional variances are uniformly bounded by the finite fourth moment condition.

Error Decomposition We denote σ̄2 the lower bound on the conditional variances and

σ2
up a the upper bound on the variances under Assumption 6. Recall νi,t = Hi,t+1β

t+1
d1;T

−
Hi,tβ

t
d1:T

, νi,0 = Xi,1β
1 − E[Xi,1]β

1 and ν̂i,t for estimated coefficients, ν̂i,t = Hi,t+1β̂
t+1
d1;T

−
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Hi,tβ̂
t
d1:T

, ν̂i,0 = Xi,1β̂
1 − X̄1β̂

1. We write

µ̂(d1:T )− µ(d1:T )√
V̂T (d1:T )

=
µ̂(d1:T )− µ(d1:T )√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
n2

∑n
i=1Var(Xi,1β1)︸ ︷︷ ︸

(I)

×

×

√∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=0 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)√∑n

i=1

{
γ̂2i,T (Yi,T −Hi,T β̂T

d1:T
)2 +

∑T−1
t=0 γ̂2i,tν̂

2
i,t +

1
n2 ν̂

2
i,0

}
︸ ︷︷ ︸

(II)

.

(39)

Term (I) We consider the term (I). By Lemma 4.1, we have

(I) =

∑T
t=1(β

t − β̂t)⊤(γ̂tHt − γ̂t−1Ht) + (β1 − β̂1)(γ̂1X1 − X̄1)√∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)︸ ︷︷ ︸

(j)

+

∑n
i=1 γ̂i,T εi,T +

∑T−1
t=1 γ̂i,tνi,t + (X̄1β

1 − µ(d1:T ))√∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)︸ ︷︷ ︸

(jj)

.

We start from (j). Since
∑n

i=1 γ̂i,t = 1 and the variances are bounded from below (see Lemma

A.4), it follows that

n∑
i=1

γ̂2
i,TVar(εi,T |Hi,T ) +

n∑
i=1

T−1∑
t=1

γ̂2
i,tVar(νi,t|Hi,t) +

1

n
Var(Xi,1β

1) ≥ T σ̄2

n∑
i=1

1

n2
= T σ̄2/n.

Therefore, since the denominator is bounded from below by σ̄
√

T/n, and since, by Holder’s

inequality

T∑
t=1

(βt− β̂t)⊤(γ̂tHt− γ̂t−1Ht)+(β1− β̂1)⊤(γ̂1X1−X̄1) ≲ T max
t

δt(n, p)||βt− β̂t||1 = op(n
−1/2)

(40)
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under Assumption 6 and the fact that T is fixed. We can now write

(I) =

∑n
i=1 γ̂i,T εi,T√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T )︸ ︷︷ ︸

(i)

×

√√√√ ∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T )∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)︸ ︷︷ ︸

(ii)

+

T−1∑
t=1

∑n
i=1 γ̂i,1νi,t√∑

iVar(νi,t|Hi,t)γ̂2i,t︸ ︷︷ ︸
(iii)

×

√∑
iVar(νi,t|Hi,t)γ̂2i,t√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)︸ ︷︷ ︸

(iv)

+
X̄1β

1 − µ(d1:T )√
1
nVar(Xi,1β1)︸ ︷︷ ︸

(v)

×

√
1
nVar(Xi,1β1)√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)︸ ︷︷ ︸

(vi)

+op(1).

First, notice that σ(γ̂T ) ⊆ σ(DT ,FT ), and by Assumption 4, E[εT |FT , DT ] = 0. Therefore,

E[γ̂i,T εi,T |FT , DT ] = 0, σ̄2||γ̂T ||22 ≤ Var
( n∑

i=1

γ̂i,T εi,T |FT , DT

)
≤ ||γ̂T ||22σ2

ε ,

where the first statement follows directly from Lemma 4.2 and the second statement holds

for a finite constant σ2
ε by the third moment condition in Assumption 6. By the fourth

moment conditions in Assumption 6, for a constant 0 < C < ∞,

E
[( n∑

i=1

γ̂i,T εi,T

)3∣∣∣FT , DT

]
=

n∑
i=1

γ̂3
i,TE[ε3i,T |FT , DT ]

≤ C
n∑

i=1

γ̂3
i,T ≤ C||γ̂T ||22max

i
|γ̂i,T | ≲ log(n)n−2/3||γ̂T ||22.

Thus,

E
[ n∑

i=1

γ̂3
i,T ε

3
i,T

∣∣∣FT , DT

]/
Var

( n∑
i=1

γ̂i,T εi,T

∣∣∣FT , DT

)3/2

= O(log(n)n−2/3||γ̂T ||−1
2 ) = o(1).

By Lyapunov theorem, we have∑n
i=1 γ̂i,T εi,T√∑n

i=1 γ̂i,TVar(εi,T |FT , DT )

∣∣∣σ(FT , DT ) →d N (0, σ2).

Consider now (iii) for a generic time t. We study the behaviour of
∑n

i=1 γ̂i,tνi,t conditional

on σ(Ft, Dt). Since σ(γ̂t) ⊆ σ(Ft, Dt), γ̂t is deterministic given σ(Ft, Dt). By Lemma 4.2,
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E[γ̂i,tνi,t|Ft, Dt] = 0. We now study the second moment. Notice that

σ̄2||γ̂t||22 ≤ Var(
n∑

i=1

γ̂i,tνi,t
∣∣Ft, Dt) =

n∑
i=1

γ̂2
i,tVar(νi,t|Ft, Dt) ≤

n∑
i=1

γ̂2
i,tσ

2
ub.

Finally, we consider the third moment. Under Assumption 6,

E
[ n∑

i=1

γ̂3
i,tν

3
i,t

∣∣∣Ft, Dt

]
=

n∑
i=1

γ̂3
i,tE[ν3

i,t|Ft, Dt] ≤
n∑

i=1

γ̂3
i,tu

3
max ≲ log(n)n−2/3||γ̂t||22.

Since ||γ̂t||2 ≥ 1/
√
n by Lemma A.4 and since Var(νi,t|Ft, Dt) > umin,

E
[ n∑

i=1

γ̂3
i,tν

3
i,t

∣∣∣Ft, Dt

]/
Var

( n∑
i=1

γ̂i,tνi,t

∣∣∣Ft, Dt

)3/2

= O(log(n)n−2/3||γ̂t||−1
2 ) = o(1).

⇒
∑n

i=1 γ̂i,tνi,t√∑n
i=1 γ̂

2
i,tVar(νi,t|Ft, Dt)

∣∣∣σ(Ft, Dt) →d N (0, 1).

The same reasoning applies verbatim to (v). Therefore, collecting our results∑n
i=1 γ̂i,T εi,T√∑n

i=1Var(εi,T |Hi,T , Di,T )γ̂2i,T

∣∣∣ σ(FT , DT ) →d N (0, 1)

∑n
i=1 γ̂i,tνi,t√∑n

i=1 γ̂
2
i,tVar(νi,t|Ft, Dt)

∣∣∣ σ(Ft, Dt) →d N (0, 1), ∀t ∈ {1, ..., T − 1}

X̄1β
1 − µ(d1:T )√

1
nVar(Xi,1β1)

→d N (0, 1).

(41)

In addition, to complete the characterization of the joint distribution, observe that

E[γ̂i,tεi,T γ̂i,tνi,t|FT , DT ] = γ̂i,tνi,tγ̂i,TE[εi,T |FT , DT ] = 0

E[γ̂i,tγ̂i,sνi,sγ̂i,tνi,t|Fmax{s,t}, Dmax{s,t}] = γ̂i,tγ̂i,sνi,min{t,s}E[νi,max{s,t}|Fmax{s,t}, Dmax{s,t}] = 0.

(42)

Since each component at time t is measurable with respect to σ(Ft+1, Dt+1), it follows the

joint convergence result[
Z0, Z1, · · ·ZT

]⊤
→d N (0, I) ,

Zt =

∑n
i=1 γ̂i,tνi,t√∑n

i=1 γ̂
2
i,tVar(νi,t|Ft, Dt)

, t ∈ {1, · · · , T − 1},

ZT =

∑n
i=1 γ̂i,T εi,T√∑n

i=1Var(εi,T |Hi,T , Di,T )γ̂2i,T

, Z0 =
X̄1β

1 − µ(d1:T )√
1
nVar(Xi,1β1)

.

55



We are left to consider the components (ii), (iv), (vi). Define

WT =

√√√√ ∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T )∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)

,

Wt =

√∑
iVar(νi,t|Hi,t)γ̂2i,t√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)

, t ∈ {1, · · · , T − 1}

W0 =

√
1
nVar(Xi,1β1)√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)

Note that ||W ||2 = 1. Note also that we can write the expression (I) as
∑T

t=0 ZtWt. Therefore

we write for any t ≥ 0, P
(∣∣∣∑T

t=0WtZt

∣∣∣ > t
)
≤ P

(
||W ||2

√∑T
t=0 Z

2
t > t

)
= P

(∑T
t=0 Z

2
t >

t2
)
, where the last equality follows from the fact that ||W ||2 = 1. Note now that since Zt

are independent standard normal,
∑T

t=0 Z
2
t is chisquared with T + 1 degrees of freedom.

Term (II) We are only left to show that (II) →p 1. We can then invoke Slutsky theorem

to complete the proof. We can write

|(II)2 − 1| =
∣∣∣ ∑n

i=1 γ̂
2
i,T (Yi,T −Hi,T β̂

T )2 +
∑T−1

t=1 γ̂2i,tν̂
2
i,t +

1
n2

∑n
i=1 ν̂

2
i,0∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) +

1
nVar(Xi,1β1)

− 1
∣∣∣
(43)

(43) ≲
∣∣∣ n

∑n
i=1 γ̂

2
i,T ε

2
i,T + n

∑T−1
t=1 γ̂2i,tν

2
i,t +

1
n

∑n
i=1(Xi,1β

1 − E[Xi,1]β
1)2

n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T−1
t=1 γ̂2i,tVar(νi,t|Hi,t) + Var(Xi,1β1)

− 1
∣∣∣︸ ︷︷ ︸

(A)

+
∣∣∣ n

∑n
i=1 γ̂

2
i,T

[
(Yi,T −Hi,T β̂

T )2 − (Yi,T −Hi,Tβ
T )2

]
n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T
s=1 γ̂

2
i,sVar(νi,s|Hi,s) + Var(Xi,1β1)︸ ︷︷ ︸

(B)

∣∣∣

+

T−1∑
t=1

∣∣∣ n
∑n

i=1 γ̂
2
i,t

[
(Hi,t+1β̂

t+1 −Hi,tβ̂
t+1)2 − (Hi,t+1β

t+1 −Hi,tβ
t)2

]
n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T
s=1 γ̂

2
i,sVar(νi,s|Hi,s) + Var(Xi,1β1)︸ ︷︷ ︸

(C)

∣∣∣

+
∣∣∣ 1

n

∑n
i=1(Xi,1β̂

1 − X̄1β̂
1)2 − (Xi,1β

1 − E[Xi,1]β
1)2

n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T
s=1 γ̂

2
i,sVar(νi,s|Hi,s) + Var(Xi,1β1)

∣∣∣︸ ︷︷ ︸
(D)

.

(44)

To show that (A) converges it suffices to note that the denominator is bounded from below

by a finite positive constant by Lemmas A.2, A.3 and the fact that each variance component

is bounded away from zero under Assumption 6.
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The conditional variance of each component in the numerator reads as follows (recall by

the above lemmas that n||γ̂t||2 = Op(1))

Var
(
n

n∑
i=1

γ̂2i,T ε
2
i,T

∣∣∣HT

)
≤ n2C̄||γ̂T ||44 ≤ log2(n)n2C̄n−4/3||γ̂T ||22 = Op(1) log

2(n)nn−4/3 = op(1),

Var
(
n

n∑
i=1

γ̂2i,tν
2
i,t

∣∣∣Ht

)
≤ C̄n2||γ̂T ||44 ≤ n2 log2(n)C̄n−4/3||γ̂t||22 = Op(1) log

2(n)nn−4/3 = op(1)

1

n
Var

(
(Xi,1β

1 − E[Xi,1]β
1)2

)
= o(1).

and hence (A) converges to zero by the continuous mapping theorem.

For the term (B), the denominator is bounded similarly to (A). The numerator is

n

n∑
i=1

γ̂2i,T

[
(Yi,T −Hi,T β̂

T )2 − (Yi,T −Hi,Tβ
T )2

]
≤n

n∑
i=1

γ̂2i,T

(
Hi,T (β̂

T − βT )
)2

+ 2n

n∑
i=1

γ̂2i,T εi,THi,T (β̂
T − βT ).

(45)

We can now write

n

n∑
i=1

γ̂2i,T

(
Hi,T (β̂

T − βT )
)2

≤ ||β̂T − βT ||21n||γ̂T ||2||max
i

|Hi,T |||2∞

n

n∑
i=1

γ̂2i,T εi,THi,T (β̂
T − βT ) ≤ ||β̂T − βT ||1max

i
||Hi,T ||∞max

j
|εj,T |n||γ̂T ||2

Notice now that by Lemma A.5 and Assumption 5, with probability 1 − 1/n, we have

||maxi Hi,T ||∞ = O(log(np)),maxj |εj,T | = O(log(n)).30 Since ||β̂T−βT ||1 = op(n
−1/4), n||γ̂T ||2 =

Op(1) and log(np)/n1/4 = o(1) the above expression is op(1). Consider now (C), namely

n
n∑

i=1

γ̂2i,t

[
(Hi,t+1β̂

t+1 −Hi,tβ̂
t)2 − (Hi,t+1β

t+1 −Hi,tβ
t)2

]
≤ n

n∑
i=1

γ̂2i,t

(
Hi,t(β

t − β̂t)
)2

+ 2
∣∣∣n n∑

i=1

γ̂2i,t(Hi,t+1β
t+1 −Hi,tβ

t)
(
Hi,t(β

t − β̂t)
)∣∣∣+ 2

∣∣∣n n∑
i=1

γ̂2i,t(Hi,t+1(β̂
t+1 − βt+1))(Hi,t+1β

t+1 −Hi,tβ
t)
∣∣∣

+ n
n∑

i=1

γ̂2i,t

(
Hi,t+1(β

t+1 − β̂t+1)
)2

+ 2
∣∣∣n n∑

i=1

γ̂2i,t

(
Hi,t+1(β

t+1 − β̂t+1)
)(

Hi,t(β
t − β̂t)

)∣∣∣.
Similar reasoning as for the terms in Equation (45) applies to each of the terms above (using

sub-gaussianity in Lemma A.5) and it is easy to show that the expression above is of order

op(1). The reasoning follows verbatim for (D).

30To note this, we can write P (maxi,j |H(j)
i,T | > t) ≤ npP (|H(j)

i,T | > t) ≤ npe−t2v for some finite constant v.

Setting npe−t2v = 1/n the claim holds.
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Rate of convergence is n−1/2. To study the rate of convergences it suffices to show that

(for fixed T )

n
[ n∑

i=1

γ̂2
i,TVar(εi,T |Hi,T−1) +

n∑
i=1

T−1∑
t=1

γ̂2
i,tVar(νi,t|Hi,t)

]
+Var(Xi,tβ

1) = O(1).

This follows directly from Lemma A.3, A.2 and the bounded conditional third moment

assumption in Assumption 6.

B.1 Proof of Theorem 4.6

Let Hi,0 = ∅, Di,0 = ∅. The proof of the corollary follows similarly to Theorem 4.5

µ̂(d1:T )− µ̂(d′1:T )− µ(d1:T ) + µ(d′1:T )√∑
d∈{d1:T ,,d′1:T }

∑n
i=1 γ̂

2
i,T (d)(Yi,T −Hi,T β̂T

d )
2 +

∑T−1
t=0 γ̂2i,t(d)ν̂

2
i,t(d)

=
µ̂(d1:T )− µ̂(d′1:T )− µ(d1:T ) + µ(d′1:T )√∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)Var(εi,T (d)|Hi,T , DT ) +

∑n
i=1

∑T−1
t=0 γ̂2i,t(d)Var(νi,t(d)|Hi,t, Di,t)︸ ︷︷ ︸

(I)

×

×

√∑
d∈{d1:T ,,d′1:T }

∑n
i=1 γ̂

2
i,T (d)Var(εi,T (d)|Hi,T ) +

∑n
i=1

∑T−1
t=0 γ̂2i,t(d)Var(νi,t(d)|Hi,t)√∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)(Yi,T −Hi,T β̂T

d )
2 +

∑T−1
t=0 γ̂2i,t(d)ν̂

2
i,t(d)︸ ︷︷ ︸

(II)

.

(46)

The component (II) converges in probability to one as discussed in the proof of Theorem 4.5.

The component (I) behaves similarly to the component (I) in Theorem 4.5 following verbatim

the same argument with a single modification: here (I) can be written as Zt(d1:T )Wt +

Zt(d
′
1:T )W

′
t , where[
Z0(d1:T ), · · ·ZT (d1:T ), Z0(d

′
1:T ), · · ·ZT (d

′
1:T )

]⊤
→d N (0, I) ,

Zt(d1:T ) =

∑n
i=1 γ̂i,t(d1:T )νi,t(d1:T )√∑n

i=1 γ̂i,t(d1:T )
2Var(νi,t(d1:T )|Hi,t, Di,t)

, t ∈ {0, · · · , T − 1},

ZT (d1:T ) =

∑n
i=1 γ̂i,T (d1:T )εi,T√∑n

i=1Var(εi,T (d1:T )|Hi,T , Di,T )γ̂2i,T

,

WT =

√√√√ ∑n
i=1 γ̂

2
i,T (d1:T )Var(εi,T |Hi,T , Di,T )∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)Var(εi,T (d)|Hi,T , Di,T ) +

∑n
i=1

∑T−1
t=0 γ̂2i,t(d)Var(νi,t(d)|Hi,t, Di,t)

,

Wt =

√√√√ ∑
iVar(νi,t|Hi,t, Di,t)γ̂i,t(d1:t)2∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)Var(εi,T (d)|Hi,T , Di,T ) +

∑n
i=1

∑T−1
t=0 γ̂2i,t(d)Var(νi,t(d)|Hi,t, Di,t)

,
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and similarly W ′
t corresponding to d′1:t. Here, independence of

[
Z0(d1:T ), · · ·ZT (d1:T )

]
of[

Z0(d
′
1:T ), · · ·ZT (d

′
1:T )

]
follows from the fact that d1 ̸= d′1 and hence γi,t(d1:T )γi,s(d

′
1:T ) = 0

for all s, t conditional on X1, D1. The weights by construction satisfy ||(W,−W ′)||22 = 1.

Therefore we write for any e ≥ 0,

P
(∣∣∣ T∑

t=0

WtZt(d1:T )−
T∑
t=0

W ′
tZt(d

′
1:T )

∣∣∣ > e
)
≤ P

(
||W ||2

√√√√ ∑
d∈{d1:T ,d′1:T }

T∑
t=0

Z2
t (d1:T ) > e

)
= P

(
χ2
2T+2 > e2

)
,

with χ2
2T being a chi-squared random variable with 2T + 2 degrees of freedom.

B.2 Tighter asymptotic results

Theorem B.1 (Tighter confidence bands under more restrictive conditions). Suppose that

the conditions in Theorem 4.6 hold. Suppose in addition that for all t ∈ {1, · · · , T −
1}, n

∑n
i=1 γ̂

2
i,tVar(νi,t|Ft−1) →as ct, n

∑n
i=1 γ̂

2
i,tVar(εi,T |FT−1) →as cT for constants {ct}Tt=1.

Then, whenever log(np)/n1/4 → 0 with n, p → ∞,

(V̂T (d1:T ) + V̂T (d
′
1:T ))

−1/2
√
n
(
µ̂(d1:T )− µ̂(d′1:T )− ATE(d1:T , d

′
1:T )

)
→d N (0, 1). (47)

Proof of Theorem B.1. The proof follows verbatim from the proof of Theorem 4.6, while

here the components Wt →a.s. ct,W
′
t →a.s. c

′
t for constants ct, c

′
t. Note that by Lemma A.3,

the asymptotic limits ct must be finite since

n
n∑

i=1

γ̂2
i,tVar(νi,t|Ft−1) ≤ ūn||γ̂t||2 = Op(1),

where ū is a finite constant by Assumption 6 (ii). Following the same argument as in the

proof of Theorem 4.6, we obtain that the left-hand side of Equation (47) converges to

T∑
t=0

ctZt −
T∑
t=0

c′tZ
′
t, (Z0, · · · , ZT , Z

′
0, · · · , Z ′

T ) ∼ N (0, I).

The variance is therefore
∑T

t=0 c
2
t +

∑T
t=0 c

2′
t = 1, since ||(W,−W )||2 = 1 as discussed in the

proof of Theorem 4.6.
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Appendix C Tuning parameters

Algorithm 4 presents the choice of the tuning parameters. The algorithm imposes stricter

tuning on those covariates whose coefficients are non-zero. Whenever many coefficients (more

than one-third) are non-zero, we impose a stricter balancing on those with the largest size.

Algorithm 4 Tuning Parameters for DCB

Require: Observations {Yi,1, Xi,1, Di,1, ..., Yi,T , Xi,T , Di,T}, δt(n, p), treatment history (d1:T ),
Lt, Ut, grid length G, number of grids R.

1: Estimate coefficients as in Algorithm 1 (applied recursively for multiple time periods)
and let γ̂i,0 = 1/n;

2: Define R grids of length G, denoted as G1, ...,GR, equally between Lt an Ut.
3: Define

S1 = {j : |β̂t,(j)| ≠ 0}, S2 = {j : |β̂t,(j)| = 0}.

4: (Non-sparse regression): if |S1| is too large (i.e., > dim(β̂t)/3), select S1 the set of the
1/3rd largest coefficients in absolute value and S2 = Sc

1.
5: for each s1 ∈ 1 : G do
6: for each Ka

1,t ∈ Gs1 do
7: for each Kb

1,t ∈ Gs1 do
8: Let γ̂i,t = 0, if Di,1:t ̸= d1:t and define γ̂t := argminγt

∑n
i=1 γ

2
i,t

s.t.
∣∣∣ 1
n

n∑
i=1

γ̂i,t−1H
(j)
i,t − γi,tH

(j)
i,t

∣∣∣ ≤ Ka
1,tδt(n, p), ∀j : β̂t,(j) ∈ S1

∣∣∣ 1
n

n∑
i=1

γ̂i,t−1H
(j)
i,t − γi,tH

(j)
i,t

∣∣∣ ≤ Kb
1,tδt(n, p) ∀j : β̂t,(j) ∈ S2

n∑
i=1

γi,t = 1, ||γt||∞ ≤ log(n)n−2/3, γi,t ≥ 0.

(48)

9: Stop if : a feasible solution exists.
10: end for
11: end for
12: end for

return µ̂T (d1:T )

Appendix D Additional simulation studies

D.1 Simulations under misspecification

We simulate the outcome model over each period using non-linear dependence between the

outcome, covariates, and past outcomes. The function that we choose for the dependence of
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Table 4: Confidence intervals length for design in main text with chi-squared distribution.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

p = 50 - Sparse 1.640 1.806 3.107 3.370
p = 100 - Sparse 1.754 1.912 3.221 3.488
p = 200 - Sparse 1.691 1.829 3.052 3.474
p = 300 - Sparse 1.706 1.847 3.113 3.446
p = 50 - Moderate 1.565 1.686 3.160 3.335
p = 100 - Moderate 1.640 1.745 3.215 3.466
p = 200 - Moderate 1.559 1.658 3.085 3.323
p = 300 - Moderate 1.541 1.628 3.028 3.230
p = 50 - Harmonic 1.641 1.777 3.138 3.287
p = 100 - Harmonic 1.682 1.796 3.201 3.323
p = 200 - Harmonic 1.678 1.781 3.257 3.433
p = 300 - Harmonic 1.733 1.856 3.348 3.527

Poor Overlap

High Corr

Poor Overlap

Medium Corr

Poor Overlap

Low Corr

Moderate Overlap

High Corr

Moderate Overlap

Medium Corr

Moderate Overlap

Low Corr

High Overlap

High Corr

High Overlap

Medium Corr

High Overlap

Low Corr

1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910 1 2 3 4 5 6 7 8 910

0
−2
−4

0
−2
−4

0
−2
−4

Time

lo
g
_
M

S
E

Type AIPW DCB

Figure 10: Mean-squared error in log-scale. Simulations for T ≤ 10, p = 100, n = 400,
two-hundred replications. Here high-correlation denotes strong serial depedence between
treatment assignments with α = 0.9, medium with α = 0.7 and weak with α = 0.5. η ∈
{0.1, 0.3, 0.5} for good, moderate and poor overlap, respectively.
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the outcome with the past outcome and covariates follows similarly to Athey et al. (2018),

where, differently, here, such dependence structure is applied not only to the first covariate

only (while keeping a linear dependence with the remaining ones) but to all covariates,

making the scenarios more challenging for the DCB method. Formally, the DGP is the

following:

Y2(d1, d2) = log(1 + exp(−2− 2X1βd1,d2)) + log(1 + exp(−2− 2X2βd1,d2))

+ log(1 + exp(−2− 2Y1)) + d1 + d2 + ε2,

and similarly for Y3(d1, d2, d3), with also including covariates and outcomes in period T =

2. Coefficients β are obtained from the sparse model formulation discussed in the main

text. Results are collected in Table 6 for the MSE and for the bias and variance in he

subsequent tables below. Interestingly, we observe that DCB performs relatively well under

the misspecified model, even if our method does not use any information on the propensity

score. We also note that our adaptation of the double lasso to dynamic setting performs

comparable or better in the presence of two periods only or a sparse structure. However, as

the number of periods increase or sparsity decreases Double Lasso’s performance deteriorates.

Finally, we observe that DCB outperforms AIPW, with a known propensity score. The

main reason is due to the instability of the inverse probability weights in dynamic settings.

Because these weights define the joint probability of treatment assignments, these can exhibit

instability (poor overlap) in small samples, increasing the variance of the AIPW estimator.

This behavior can be observed as we decompose the bias and variance of AIPW: whereas

AIPW has a smaller finite sample bias than DCB with a misspecified model, its variance is

substantially larger.

D.2 Simulations with low dimensional covariates

In Figure 11, we explore the performance of the method in low dimensional scenarios where

p ∈ {10, 20}. DCB outperforms AIPW and IPW uniformly except for p = 10 and strong

overlap of the propensity score, where DCB performs comparably or slightly worst than

AIPW. However, in all other scenarios where overlap decays (both moderate and weak

overlap), DCP outperforms AIPW in low-dimensional settings. Improvements of DCB over

AIPW increase with the number of periods. These results justify DCB also in low dimensional

scenarios in the presence of poor or moderately poor overlap of the propensity score.
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Table 5: MSE under misspecified model in a sparse setting.

T = 2 T = 3

η = 0.3 η = 0.5 η = 0.3 η = 0.5

DCB 0.238 0.354 0.751 0.402

aIPW* 0.434 0.802 1.363 1.622

aIPWh 0.863 1.363 1.882 2.464

CAEW (MSM) 0.815 1.364 7.889 8.675

D. Lasso 0.121 0.142 0.689 0.503

Seq.Est 0.811 0.346 2.288 2.031

DiD switchback 60.05 100.5 795.5 1104

Local Projection 0.639 0.382 1.995 1.922

D.3 Comparisons as signal strength varies

In this section, we present simulations results with the same design as in Section 6 for a

sparse setting (p = 10), but with one distinction: we multiply the signal of the coefficients

by η ∈ {0.1, 0.3, 0.5} (overlap constant), varying the strength of the signal in the linear

regression. This approach follows in spirit with simulations in Section 3 in Wüthrich and

Zhu (2023). Similarly to what observed in Wüthrich and Zhu (2023), as the signal decreases

(η moves from 0.5 to 0.1 in our case), the performance of AIPW that uses lasso deteriorates.

The relative improvements of DCB over AIPW increase as the signal strength decreases,

further motivating the proposed method.
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Table 6: MSE under misspecified model in a moderately sparse setting.

T = 2 T = 3

η = 0.3 η = 0.5 η = 0.3 η = 0.5

DCB 0.212 0.256 0.326 0.384

aIPW* 0.428 0.789 1.364 1.616

aIPWh 0.826 1.313 1.857 2.434

CAEW (MSM) 0.781 1.317 7.833 8.616

D. Lasso 0.115 0.133 0.675 0.494

Seq.Est 0.847 0.366 2.316 2.058

DiD switchback 59.71 100.1 795 1104

Local Projection 0.670 0.408 2.023 1.950

Table 7: Bias for sparse setting under misspecified model.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

DCB 0.227 0.340 -0.467 -0.199
AIPW - Known Prop 0.146 0.288 -0.0003 0.318
AIPW - High Prop 0.852 1.119 1.245 1.459
AIPW - Low Prop 0.551 1.045 1.378 2.057

CAEW 0.760 1.086 2.718 2.872
Double Lasso 0.156 0.225 0.671 0.469

Seq.Est. -0.793 -0.448 -1.391 -1.276
DiD Switchback 7.66 9.98 28.02 33.15
Local Projection -0.746 -0.566 -1.370 -1.343

Table 8: Variance for sparse setting under misspecified model.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

DCB 0.187 0.239 0.533 0.363
AIPW - Known Prop 0.413 0.719 1.364 1.521

Naive Lasso 0.273 0.259 1.058 1.194
AIPW - High Prop 0.138 0.111 0.333 0.336
AIPW - Low Prop 0.612 0.225 0.827 0.438

CAEW 0.237 0.184 0.500 0.425
Double Lasso 0.098 0.092 0.239 0.284

Seq.Est. 0.183 0.145 0.354 0.404
DiD Switchback 1.25 0.86 10.17 5.39
Local Projection 0.079 0.061 0.118 0.118

64



Table 9: Bias for moderately sparse model under misspecification.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

This Paper 0.202 0.358 0.096 0.323
AIPW - Known Prop 0.123 0.266 -0.010 0.308
AIPW - High Prop 0.830 1.097 1.235 1.449
AIPW - Low Prop 0.529 1.023 1.367 2.047

CAEW 0.738 1.064 2.708 2.862
Double Lasso 0.134 0.202 0.661 0.459

Seq.Est. -0.815 -0.470 -1.401 -1.286
DiD Switchback 7.64 9.96 28.01 33.15
Local Projection -0.768 -0.588 -1.380 -1.353

Table 10: Variance for moderately sparse model under misspecification.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

This Paper 0.171 0.129 0.317 0.280
AIPW - Known Prop 0.413 0.719 1.364 1.521
AIPW - High Prop 0.138 0.111 0.333 0.336
AIPW - Low Prop 0.612 0.225 0.827 0.438

CAEW 0.237 0.184 0.500 0.425
Double Lasso 0.098 0.092 0.239 0.284

Seq.Est. 0.183 0.145 0.354 0.404
DiD Switchback 1.25 0.86 10.17 5.39
Local Projection 0.079 0.061 0.118 0.118
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Figure 11: Comparison of DCB with AIPW and IPW (with estimated propensity score and
estimated conditional mean function) over 200 replications. Low dimensional scenarios with
p ∈ {10, 20}. The y-axis report the MSE in log-scale the the x-axis reports different scenarios
in terms of overlap (strong, moderate and weak overlap).
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Figure 12: p = 100, simulation design as in Section D with one difference: the coefficients
β multiply by η with η ∈ {0.1, 0.3, 0.5} (strong, moderate and weak signal, respectively).
y-axis reports the MSE in log-scale.
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Appendix E Effect of government contracts on local

multipliers

In this section we offer a different application studying the effect of defense procurament

contracts on local multipliers, using data from Auerbach et al. (2020). The finding in this

application are consistent with the findings in our application in the main text.

A growing literature at the intersection of micro and macroeconomics focuses on esti-

mating the effect of “local” fiscal multipliers, i.e., the effects of differential fiscal shocks at

lower levels of aggregation within States in the United States. Examples include Auerbach

et al. (2020); Chodorow-Reich (2019); Nakamura and Steinsson (2014) among others. A

common method is to use variants of local projections (Jordà, 2005) to estimate short and

long-term treatment effects. In this section, we illustrate how our procedure complements

current practice using data from Auerbach et al. (2020).

E.1 Data and estimation

We follow Auerbach et al. (2020) and use change in defense government expenditure to

construct the treatment of interest, available until 2016. The outcomes of interest are em-

ployment and growth rate, both available for 383 metropolitan areas. We augment the

dataset in Auerbach et al. (2020) using census data at the metropolitan in the years 2010 -

2016 to control for many covariates.31 We construct four binary treatments: whether defense

government spending has increased by at least 10, 20, 30% over the previous year.32

Figure ?? illustrates the dynamics of treatments for defense government spending exceed-

ing at least 5% the spending in the previous year. Most of the units switch treatment over

time. Change in treatment may be associated with past growth rate, employment rate, level

of government spending, and other factors, motivating controlling for many characteristics.

Our estimand of interest is formally defined as

τs =
1

T

∑
t

E
[
Yi,t(1s, Di,(t−s):(−∞))− Yi,t(0s, Di,(t−s):(−∞))

]
, s ∈ {1, 2, 3}, (49)

as the effect of being under treatment for one, two, or three most recent periods.

We consider a pooled estimation strategy over the years 2010 - 2016. We control for

31We use as data sources https://api.census.gov/data/2012/acs/acs1/subject/variables.html and https:
//www2.census.gov/programs-surveys/popest/datasets/2010-2019/metro/totals/cbsa-est2019-alldata.csv.

32The definition of treatment follows in spirit the treatment definition adopted in the OLS specification in
Auerbach et al. (2020), where the authors consider changes in defense government spending as the treatment.
Here, we use a binary instead of a continuous treatment.
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past growth rate, past employment rate, log defense government expenditure in the past two

years, log population, migration rate, age distribution, and household size distribution, and

in addition to those, we include state and time-fixed effects. Coefficients are estimated with

a penalized linear regression (Algorithm 1 with model = linear).

E.2 Results

Figure 13 reports treatment effects estimates of the proposed method (denoted as “10, 20, 30%

DCB” in the figure’s legend). Each point s on the x-axis corresponds to the average effect

τs. 90%-confidence intervals are depicted in gray. The darker gray area denotes confi-

dence intervals with Gaussian quantiles, and the shaded gray area confidence intervals with

(conservative)
√
χ2T -quantiles. Treatment effects are positive and increasing as we increase

government spending from 10% to 30%. Effects are also increasing as the number of periods

of exposure to treatment increases from one to three years.

To illustrate the difference of our procedure from standard projection methods, Table

11 compares point estimates of our procedure with local projections for a 30% increase in

defense government spending. The standard local projection is estimated by projecting the

observed outcome Yt+2 onto the treatment Dt, controlling for time and unit fixed effects, as

in Auerbach et al. (2020), and in the spirit of two-way fixed effect models.

The magnitude and sign of treatment effects estimated using our approach are compa-

rable to the ones estimated via local projections by Auerbach et al. (2020). However, point

estimates of the estimated (standard) local projection are smaller than estimates obtained

with our approach at the three years horizon and comparable otherwise. Smaller point esti-

mates at a longer horizon are intuitive: the standard local projection estimates the impulse

response function, i.e., the effect of changing treatment in the previous three years, averaging

over future (realized) treatment assignments.33 Here, we recover the different estimand τs

that studies treatment effects for three consecutive periods.

Finally, for longer (three periods) horizons, the proposed approach presents a much

smaller variance than the IPW estimator, with probabilities estimated via logistic regres-

sion. This result is intuitive as IPW is prone to poor overlap (larger variance) with a longer

time horizon because probability weights depend on the joint probability of treatment his-

tory. We also compare balancing with the AIPW method that uses the same estimation

strategy of DCB and balance covariates via inverse probability weights with such weights

33Formally, the impulse response function defines

E
[
Yi,t(Di,t, Di,t−1, 1, Di,t−3, · · · )

∣∣∣Di,t−2 = 1
]
− E

[
Yi,t(Di,t, Di,t−1, 0, Di,t−3, · · · )

∣∣∣Di,t−2 = 0
]
.
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estimated using a high-dimensional (penalized) generalized linear model (Negahban et al.,

2012). Here, DCB and AIPW present comparable results for employment, whereas we see a

variance reduction by more than 50% for estimating GDP at the three years horizon when

using DCB.

Table 11: Effect of increasing defense government spending by 30% over one, two or three
periods (s ∈ {1, 2, 3}). DCB denotes the proposed method, AIPW uses the same outcome
model as DCB and estimates the propensity score via a penalized logistic regression, IPW
estimates inverse probability weights via a simple logistic regression and LP denotes a stan-
dard local projection of Yi,t on the treatment at time t − s, controlling for time and unit
fixed effects.

GDP Emp

DCB AIPW IPW LP DCB AIPW IPW LP

s = 1 0.29 0.20 0.36 0.30 0.14 0.14 0.10 0.06
(0.33) (0.25) (0.31) (0.12) (0.12) (0.10) (0.18) (0.12)

s = 2 0.04 0.16 0.12 0.08 0.33 0.26 0.16 0.11
(0.47) (0.55) (0.74) (0.18) (0.20) (0.18) (0.29) (0.18)

s = 3 1.04 2.19 2.63 0.11 0.49 0.69 1.09 0.09
(1.09) (1.75) (2.36) (0.17) (0.55) (0.47) (1.24) (0.17)

colour 10% DCB 20% DCB 30% DCB
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Figure 13: Effect of government spending: pooled regression from t ∈ {2010, · · · , 2016} Gray
region denotes the 90% confidence band for treatments corresponding to a 30% increase in
defense government spending. The light-gray corresponding to the

√
χ2T (α) critical quantile,

and darker area to the Gaussian critical quantile. 10, 20, 30% denote correspond to different
treatments as increasing defense government spending by 10, 20, 30%.
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