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1 Introduction

This paper discusses estimation and inference on the effect of a policy intervention on a single unit observed

over multiple periods and exposed to treatment from one point in time onwards. We consider an aggregate

time-series set-up where researchers observe the outcome of the unit of interest T0 periods before treatment

and T −T0 after the treatment. Researchers’ main goal is to conduct inference on the effect of a trajectory

of treatment effects over the post-treatment period. Namely, by denoting τt = Y 1
0t − Y 0

0t the difference

between the two potential outcomes at time t, researchers want to test whether {τt}t>T0 = τ o, for some

null trajectory of interest τ o. Their second goal is to precisely estimate the average effect over time.

In the same spirit of synthetic controls (Abadie and Gardeazabal, 2003; Abadie et al., 2010), and

aggregate panel data models (Hsiao et al., 2012), we construct counterfactuals using information from

n (possibly finitely many) control units and covariates observed over T periods. We exploit information

over the time series for conducting asymptotic inference. The applications of interest are those where we

observe individuals at a relatively frequent level, e.g., quarterly or monthly, over multiple years. Examples

are studying the effects of taxation (Bai et al., 2014), changes in welfare programs (Maclean et al., 2019)

or (geo-localized) marketing experiments (Brodersen et al., 2015; Varian, 2016). We discuss additional

applications at the end of Section 1.1.

The first contribution of this paper is to derive an inferential procedure that is valid for general

parametric and non-parametric (machine-learning) estimators. We propose a resampling mechanism to

guarantee exact asymptotic size control without imposing restrictions on the set of estimators. The key

idea for inference is to combine the sample splitting procedure with the block-bootstrap (Politis and

Romano, 1992) and exploit the differentiability properties of the proposed procedure. Our approach does

not require correct model specifications.

As a second contribution, we introduce an ensemble procedure that combines many such estimators,

e.g., Synthetic controls, factor models estimators, and fully non-parametric estimators such as Random

Forest or Kernel Smoothing, into a single prediction. We penalize the methods with the worst out-of-

sample performance over the pre-treatment period. The method’s goal is to increase precision. Also, it per-

mits replacing heuristic model selection criteria whose properties are unknown with time-dependent obser-

vations with a theoretically grounded procedure. This has important implications for applied economists,

who often face the difficult model selection choice from a dictionary that includes many methods (e.g.,

factor models, synthetic control, difference-in-differences).1 The ensemble method that we propose builds

on the literature on exponential aggregation (Rigollet et al., 2012; Cesa-Bianchi and Lugosi, 2006), time-

1See also the discussion in Athey et al. (2019).
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series and forecasts’ combinations (Timmermann, 2006; Elliott and Timmermann, 2004), which we study

here for causal inference. We show that the procedure consistently recovers the average treatment effect

through a bias adjustment, and it inherits strong oracle properties for its prediction performance.

Throughout the text, we assume exogeneity of the treatment time and stationarity for inference. These

conditions are common when conducting inference with Synthetic Controls in the presence of a long time

series2, since they permit to conduct inference without relying on symmetry assumptions of placebo testing

(Firpo and Possebom, 2018; Ben-Michael et al., 2021). They imply that a pre-post treatment comparison

of the means returns a consistent (but possibly inefficient) estimate of the average effect on the treated.

In separate sections, we relax stationarity in two directions: (i) allowing for time-varying fixed effects,

encompassing popular two-way fixed-effect models; (ii) deriving prediction guarantees for arbitrary non-

stationary settings.3

We conclude our discussion with a simulation study and an empirical application. We show that

our procedure leads to larger power than existing methods while controlling the size of the test. In an

application, we study the effect of Tennessee’s health-insurance dis-enrollment program on health-related

outcomes. Using survey data from Behavioral Risk Factor Surveillance System Data, we show that the

program decreased health insurance coverage and the likelihood of visiting a doctor.

The paper is organized as follows. In Section 2 we introduce the set-up, and identification strategy. In

Section 3, we introduce the method for estimating counterfactuals and inference on sharp nulls. In Section

4, we discuss estimation of the average effect on the treated. In Section 5 we discuss prediction guarantees

under non-stationarity. Section 6 discusses numerical experiments. Section 7 discusses applications in

health economics. Finally, in Section 8 we provide extensions in the presence of carry-over effects.

1.1 Related Work

While non-parametric estimators have found widespread use in microeconomic applications (Athey and

Imbens, 2019), their analysis (and consequently their applicability) in the presence of aggregate data has

received much less attention. However, with aggregate data, such estimators can improve precision and

better disentangle the effect of the policy from idiosyncratic shocks. This paper proposes a method that

enables counterfactual prediction and hypothesis testing in the context of Synthetic Controls (SC) using

predictions arising from many parametric and non-parametric estimators.

2For inference via Synthetic Control Chernozhukov et al. (2018) impose stationarity of the residuals under correct model
specification and similar stationarity assumptions as to the one discussed above under misspecification to show the validity of
permutation tests. Stationarity, strong mixing conditions on the joint distribution of the residual errors and covariates, are
also imposed for valid inference in synthetic control settings in Carvalho et al. (2018), while covariance stationarity conditions
are imposed in Li and Bell (2017). Further discussion is in Section 2.

3These are in Section 4.1 and Section 5 respectively.
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Recent literature has proposed a wide variety of methods for predicting counterfactuals in the setting

under consideration, including factor and panel data models (Bai, 2009; Hsiao et al., 2012), synthetic

controls (Abadie et al., 2010; Xu, 2017; Doudchenko and Imbens, 2016; Arkhangelsky et al., 2021; Ferman

and Pinto, 2016), two-ways fixed effects models (Imai and Kim, 2021), ridge regression methods (Ben-

Michael et al., 2021), kernel balancing (Hazlett and Xu, 2018), functional methods (Gunsilius, 2020) among

others. Additional references include Athey et al. (2021) who proposes a matrix completion methods for

SC; Athey et al. (2019) shows in a simulation exercise that ensemble methods outperform individual

SC predictions on many economic data sets; Amjad et al. (2018) proposes singular value thresholding,

whereas matching has been discussed by Imai et al. (2018). Difference-in-difference methods were recently

discussed in Athey and Imbens (2022) and Arkhangelsky et al. (2021) in the context of staggered adoption.

However, selection among these methods remains an open research question (Hsiao and Zhou, 2019).

Combining different predictions offers a simple data-adaptive procedure to exploit information from all

these models while improving the prediction performance (Timmermann, 2006). As a result, our contri-

bution can be viewed as complementary to this literature. To the best of our knowledge, we provide the

first set of conditions under which predictions made by any or many machine learning methods, including

Random Forests, can be used to develop valid tests for SC.

A closely related method to our inference procedure is the permutation-based inference method, dis-

cussed in Chernozhukov et al. (2021). Their method accommodates a single (linear) model specification

only and imposes stability conditions of the estimator. Also, while the permutation-based methods esti-

mate counterfactuals using the entire sample (pre and post-treatment periods) as a training set, imposing

the sharp null hypothesis of no treatment effects, here we estimate counterfactuals using the pre-treatment

period only. This approach permits that estimation of the counterfactual does not depend on the outcomes

observed over the post-treatment period. Our approach is particularly suited whenever the post-treatment

period is proportional to the pre-treatment period as in the context of our empirical application.4

Our paper relates more broadly to inference using penalized methods, including Chernozhukov et al.

(2018) and Carvalho et al. (2018), which propose penalized linear regressors for asymptotic inference on

treatment effects in an SC setup. However, Carvalho et al. (2018) requires a consistent estimation of

treatment effects, which is not required in our setting and focuses on a penalized model only. Differently,

Chernozhukov et al. (2018) proposes a bias-adjustment procedure for asymptotic inference, which in our

framework is not required for hypothesis testing but used for average treatment effect on the treated

(ATT) estimation. Our resampling mechanism allows for more generality than the tests in Chernozhukov

4In our empirical application, the post-treatment period is approximately twenty, and the pre-treatment period is approx-
imately sixty. The reader may refer to Example 3.1 for an illustration of the benefits.
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et al. (2018) since we do not require the use of penalized linear regressor and the related conditions for

estimation of counterfactuals, but we allow for general non-parametric estimators. Related literature also

includes Li and Bell (2017), and Hsiao et al. (2012), which discuss properties of constrained least-squares

methods under stationarity and correct model specification only. Li (2020) discusses a sub-sampling

procedure for inference with constrained least-squares estimators only.

Finally, we relate to Künzel et al. (2019) who discuss model averaging with i.i.d. data and classifies

method into three classes, denoted as S, T, and X learners. This paper pioneers the idea of T-learning

in Synthetic control setting, offering an alternative and simple weighting scheme which is inspired by the

literature on boosting (Schapire and Freund, 2012) and online learning (Cesa-Bianchi et al., 1997, 1999;

Cesa-Bianchi and Lugosi, 2006).

To conclude, we can list several applications of interest. The first set of relevant applications includes

changes in policy at a regional or state level. For instance, studying the effects of (i) exogenous variations

such as environmental disasters on policy-changes (Potrafke and Wuthrich, 2020), or economic outcomes

(Cavallo et al., 2013); (ii) of Medicaid expenditure expansions or contractions (Tello-Trillo, 2021); (iii)

of tax-reform on prices (Bai et al., 2014); or (iv) of policy reforms on economic growth (Billmeier and

Nannicini, 2013). The second avenue of interesting applications includes experiments on online platforms,

for which synthetic controls are becoming increasingly popular, especially in the presence of geo-localized

experiments (Varian, 2016; Li, 2017). The third set of applications includes studying the effect of new

algorithms or financial instruments (Xie and Huang, 2014; Bojinov and Shephard, 2019).

2 Setup and Identification

Throughout this article for each unit i we observe outcome variable Yit. We denote with Y0t the unit

treated if Dt = 1 and under control otherwise; the remaining i = 1, · · · , n units, Y1t, . . . , Ynt are units

always observed in the control state. Additional covariate information for each unit are denoted in compact

form as Zit. Zit may also contain past covariates and past outcomes.

2.1 Estimands and Null Hypothesis

Following the literature on panel data and synthetic control models (e.g., Hsiao and Zhou, 2019; Abadie

et al., 2010), we define the treatment assignment and the outcome of interest, respectively as

Dt = 1{t > T0}, Y0t = DtY
1
0t + (1−Dt)Y

0
0t, Yjt = Y 0

jt, j > 0 (1)
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where Y 1
0t, Y

0
0t denote the potential outcomes under treatment and control for the unit of interest i = 0, and

Y 0
jt denotes the potential outcome under control of unit j. Our definition of potential outcomes implicitely

imposes that SUTVA holds (Rubin, 1990) and no carry-over effects (Imai et al., 2013). Extensions in the

presence of carry-overs are discussed in Section 8 .

In applications, researchers may want to test whether the difference between two potential outcomes

Y 1
0t−Y 0

0t equals zero for all post-treatment periods. Namely, they may be interested in conducting inference

on the time-specific treatment effects defined below.

Definition 2.1 (Time-specific treatment effect). The time-specific treatment effect is defined as follows:

τt = Y 1
0t − Y 0

0t.

Here, τt defines the difference in potential outcomes at time t. We begin our discussion by introducing

the null hypothesis of interest.

Definition 2.2 (Sharp Null hypothesis). Define the sharp null hypothesis as

H0 : τt = αot , t ∈ {T0 + 1, · · · , T}, (2)

for a known sequence {αot}t>T0 .

Equation (2) imposes that the potential outcome over the post-treatment period equals the potential

outcome under control plus a known (possibly time-varying) constant. For example, we may consider

aot = 0 or we may consider also testing a linear trend of the form aot = δ(t − T0) for an arbitrary δ ∈ R.

Our results also extend when we test the average of τt.
5 Finally, note that more generally, we can

incorporate a more general class of hypothesis H0 : Y 1
0t = f(Y 0

0t, a
o
t ), a

o
t ∈ R, t > T0, for a function f

being invertible in its first argument, omitted for the sake of brevity. We define

Y o
0t =


Y0t − αot t > T0,

Y0t t ≤ T0.

the (observed) potential outcome under control under the null hypothesis H0.

Testing for treatment effects may not be satisfactory to researchers, who may also be interested in

reporting estimates of average treatment effects. This is defined below.

5Namely, we may also test E[τt] = αo
t , hence allowing potential outcomes under treatment and control having different

idiosyncratic shocks. This is omitted for the sake of brevity only and discussed in the Appendix (Algorithm G.1) and Remark
3.
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Definition 2.3 (Average Treatment Effect on the Treated). The average treatment effect on the treated

is defined as

τ =
1

T − T0

∑
t>T0

E
[
Y 1
0t − Y 0

0t

]
. (3)

Here, τ denotes the average effect on the treated, averaged also over the post-treatment period. The

expectation is taken over the idiosyncratic shocks.6

2.2 Identification Conditions

The first condition that we impose is stationarity. This is common in the literature on Synthetic Control,

see Carvalho et al. (2018); Li and Bell (2017); Chernozhukov et al. (2018).7 We relax it in Section 5,

where we allow for non-stationary observations.

Assumption 1 (Stationarity). Suppose that (Y 0
0t, Y1n, · · · , Ynt, Z0t, · · · , Znt) ∼ D0 is stationary.

Assumption 1 imposes stationarity. In Section 4.1 we show how our results for inference extend under

non-stationarity, in the presence of an (unknown) time-varying fixed-effects.

The second condition we impose is an identification assumption.

Assumption 2 (Identification Condition). Suppose that T0 ⊥ (Y 0
0t, Y

1
0t, Y1:n,t, Z0:n,t)

T
t=1.

Assumption 2 states that the timing of the treatment is exogenous. The same conditions can be found

in previous literature on Synthetic Controls. For instance, recent literature on Synthetic Control (Abadie

et al., 2010; Chernozhukov et al., 2018; Arkhangelsky et al., 2021; Chernozhukov et al., 2018; Li and Bell,

2017) treated T0 as deterministic, in which case exogeneity of T0 implicitely holds. See for example, the

discussion in Ferman and Pinto (2016) and Bottmer et al. (2021). Carvalho et al. (2018) also explicitely

imposes exogeneity similarly to the above condition.

In the context of our empirical application, where the treatment consists of a dis-enrollment from

Medicaid occurring in the early 2000s in Tennessee, and the outcomes are health-related outcomes, as

argued in Argys et al. (2020), if the policy can be attributed to budget deficit interpretable as an exogenous

variation, the assumption directly holds. We warn the reader, however, that failure of the assumption

may invalidate the inferential strategy.

Motivated by Assumption 2 we will implicitely condition on T0 throughout the rest of our discussion

unless otherwise specified, since, conditional on T0 the distribution of observables and unobserved potential

6Note that whenever τt is non-random τ = 1
T−T0

∑
t>T0

τt.
7Stationarity and beta-mixing conditions as stated above cover a large class of arma processes (Pham and Tran, 1985),

ar-arch processes (Lange et al., 2011), Markov Switching Processes (see for example Lee, 2005), garch (Carrasco and Chen,
2002), to cite some.
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outcomes remains invariant. We return instead to non-stationary conditions in Section 5 where we relax

Assumption 1 and 2.

Example 2.1 (Stationary factor models). Suppose that

Y 0
jt = µj + θt + λjFt + γ(Zjt) + uj,t, j ∈ {0, · · · , n}, (4)

with uj,t denoting stationary idiosyncratic errors. Let θt ∼ N (0, 1) and exogenous, with, Ft denoting

common stationary unobserved exogenous factors and λj the (exogenous) individual specific effect, and

γ(Zjt) a stationary components which depends on covariates. Then Assumption 1 holds.

2.3 Testable Implications and Identification of Average Effects

We conclude this discussion with two lemmas. The first lemma provides a testable implication for the

sharp null hypothesis in Definition 2.2. This is stated below.

Lemma 2.1 (Sharp Null: Testable Implication). Under the null hypothesis in Equation (2) and As-

sumptions 1, 2, then (Y o
0t, Y1t, · · · , Ynt, Z0t, · · · , Znt) is stationarity and independent of T0 for all t ∈

{1, · · · , T0, · · · , T}.

The above condition implies that the distribution before and after the intervention period T0 must

remain invariant under the null hypothesis. This assumption is testable since we observe the empirical

distribution of the above vector before and after the intervention time T0. Lemma 2.1 is at the basis of

our approach for testing the null hypothesis, which we discuss in Section 3.

The second goal is to estimate the average effect. Identification of τ is discussed in the following

lemma.

Lemma 2.2 (Identification of τ). Let Assumptions 1, 2 hold. Then

τ =
1

T − T0

∑
t>T0

E
[
Y 1
0t|T0

]
− 1

T0

T0∑
s=1

E
[
Y 0
0s|T0

]
.

Lemma 2.2 is an identification result. It states that the post-treatment difference in expectation equals

the target estimand τ . While Lemma 2.2 is not invoked for constructing our test, it is used for estimating

the average effect discussed in Section 4.

The proofs of the lemmas are contained in Appendix A.
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Remark 1 (Extensions with time fixed effects). In Section 4.1 we show how our results directly extend

to the case where

Y 0
0t = κ0t + ιj + ε0j,t, E[ε0j,t] = 0,

where κ0t denotes a time-fixed effect. This extension, while simple, has important implications: it permits

incorporating non-stationary unobserved components. For this case, stationary can fail as long as the

control group is “representative” of the treated unit, i.e., time fixed effects are the same between the

control and treated unit. This follows in the same spirit of two-way fixed-effect models (Imai and Kim,

2021) that are commonly encountered in applications see, for example, Garthwaite et al. (2014).8 In

the presence of time-fixed effects, identification is achieved by a difference-in-difference as opposed to a

pre-post treatment comparison as discussed in Lemma 4.2.

3 Counterfactuals Predictions and Hypothesis Testing

In this section, we discuss the problem of estimating the counterfactual prediction Ŷ 0
0t, t > T0 and con-

ducting inference on the sharp null hypothesis in Definition 2.2.

Throughout our discussion, for expositional convenience, we denote in the compact form

Xt = (Y1t, . . . , Ynt, Z
>
0t, Z

>
1t, . . . , Z

>
nt) ∈ X .

To test the null hypothesis of interest, we first estimate the true potential outcome Y 0
0t, t > T0,

unobserved over the post-treatment period. We define Ŷ 0
0t its estimate constructed as follows

Ŷ 0
0t = w(F0)

>g(Xt). (5)

Here w(F0) denotes a generic functional of the empirical distribution F0 of (Y0t, Xt) over the pre-treatment

period, where Y0t serves as the main outcome of interest. The choice of w(F0) can be arbitrary, with the

only condition required that w(·) is a Hadamard differentiable functional (see Assumption 4).9 In Section

5 we provide explicit expressions for w(·).10

It is important to note that the functions g(Xt) can be data-dependent. Such functions are estimated as

8For example, in the context of our application for studying the effect of Tennessee dis-enrollment health-insurance
program, Obamacare between 2010 and 2014 may act as a time-varying confounder. Therefore, we use as the control group
for the effect of dis-enrollment in Tennessee the outcome from the other Southern States that, similarly to Tennessee, did not
expand Medicaid between 2010-2014 due to Obamacare.

9Definition of Hadamard differentiability is provided in Appendix B.1.
10Since the functions g(·) can contain an intercept, the component w(F0)>g(Xt) also estimates the (time-invariant) shift

in mean after subctracting Ȳt. See, for instance, Example 3.1.
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described in Algorithm 1. Namely, first, we divide the pre-treatment period into two blocks t ∈ {T−, · · · , 0}

and t ∈ {1, · · · , T0}. We define F− the empirical distribution for t < 1 of (Y0t, Xt). We construct the

predictors as follows {
x 7→ gj(x;F−)

}
(6)

with F− denoting the training set for such predictors, and gj denoting some pre-specified regressor. For

example g1(Xt;F−) can denote the prediction of a Random Forest, trained over the sample t < 0, with

empirical distribution F−. Whenever clear from the context, we will omit the second argument F− from the

function gj(·). Throughout the rest of our discussion, we will fix the size of T− and consider asymptotics

as T →∞, T0 ∝ T .

We conclude our discussion with two cases of interest.

Case 1: Ensemble To gain further intuition on Equation (5), observe that we can interpret w(F0) as

some data-dependent weights, while the functions g(Xt) are interpreted as predictors or “experts” that,

based on information Xt, predict the counterfactual outcome Yjt (net of time-fixed effects) at time t. This

follows in the same spirit of forecasts combinations (Timmermann, 2006), with gi denoting some “experts”

or learners. Section 5 discusses examples and properties of weighting schemes. The construction of the

weights is based on out-of-sample performance: it uses information F0 which has not been used for the

training of the algorithms g(·) (that instead use information before time t = 0).

Case 2: Single Regressor Equation (5) is, however, more general than only ensemble methods, since

it also allows for estimation with a single regressor g1(Xt) (e.g., the Synthetic Control).

Algorithm 1 Counterfactual Estimation with Sample Splitting

Require: Observations {Y0t, Xt}Tt=T− , time of the treatment-T0, learners F 7→ g1(·, F ), . . . , gp(·, F )
1: Split the pre-treatment period into two parts: t ∈ [T−, 0] and t ∈ [1, T0]
2: Form predictions gj(·;F−) with F− being the empirical distribution of {Y0t, Xt}t<1 , j ∈ 1, . . . , p.
3: Use the second pre-treatment period, {Y0t, Xt}T0t=1, to estimate the weights of the learners, w(F0).
4: Compute the predicted counterfactual

Ŷ 0
0t =

∑p
j=1wj(F0)gj(Xt) for t > T0

return the predictions (Ŷ 0
T0+1, · · · , Ŷ 0

T ).

3.1 Testing the Sharp Null Hypothesis

Given Ŷ0t, we construct a test statistics and test with coverage 1− α having the following form:

10



T = (T − T0)−1/2
T∑

t=T0+1

(
Y o
0t − Ŷ 0

0t

)2
, φα(T ) = 1

{
T ≥ q∗1−α

}
(7)

where q∗1−α is the estimated 1−α quantile of T . The test statistic depends on the prediction error between

the estimated counterfactual outcome and the potential outcome under the null hypothesis. Observe that

under Equation (5), we can represent in compact form the test statistic as a functional of the empirical

distributions

T (F0, F1) = (T − T0)1/2
∫ (

y − w(F0)g(x)
)2
dF1(x, y), (8)

where F1 denotes the empirical distribution over the post-treatment period of (Y o
0t, Xt).

We obtain the critical quantile q∗1−α using the block bootstrap (Politis and Romano, 1992, 1994).

Formally, we resample the entire vector (Y0t, Xt)
T
t=1, over the pre-treatment period, constructing first T0

units serving as pre-treatment period’s observations and T − T0 units serving as post-treatment period’s

observations. We then construct the empirical measure of the bootstrapped sample (F ∗0 , F
∗
1 ) and compute

T ∗ = T (F ∗0 , F
∗
1 ). A formal description is included in Algorithm 2.

The main intuition behind the inferential procedure is the following. We use a portion of the data

to train predictors, while the remaining observations are used for the bootstrap estimate of the critical

value when conducting hypothesis testing. We only estimate learners once and not on each bootstrapped

sample. Figure 1 provides a graphical illustration.

Algorithm 2 Testing Sharp Nulls: Basic Algorithm

Require: Observations {Y0t, Xt}t>1, predictors g1(·), · · · , gp(·) estimated as in Algorithm 1.
1: for b = 1, . . . , B do
2: Sample observations with replacement {Y o

0t, Xt}t>1, and obtain bootstrap sample {Y o∗
0t , X

∗
t }t>1 by

performing circular block bootstrap on {Y o
0t, Xt} for t ∈ {1, . . . , T};

3: Construct the empirical measure from the bootstrap sample F ∗0 , F
∗
1 , and the test statistic T ∗ =

T (F ∗0 , F
∗
1 );

4: end for
5: Compute q∗1−α as (1− α)-th quantile of the sample

return Reject the null hypothesis if T > q∗1−α.

Below, we formalize the validity of the bootstrap.11 We impose the following condition.

Assumption 3. Assume that {Y 0
0t, Xt}t≥1 is β-mixing with mixing coefficients

∑∞
k=1(k + 1)2β(k) < ∞.

In addition, g(·), Y 0
0t are uniformly bounded almost surely.

11Lemma 2.1 provides the main intuition. The lemma implies that the distribution before and after the treatment must
remain the same under the null hypothesis. Therefore, intuitively, we may expect that (F ∗0 , F

∗
1 ) centered around the true

empirical distribution converges to the same empirical process (after appropriate rescaling) of the limiting process of (F0 −
D0, F1 − D0), under the null hypothesis. We can then invoke Hadamard differentiability properties to show the bootstrap’s
validity. We use such properties in the derivation of the validity of the bootstrap.
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Assumption 4. Suppose that w(·) is Hadamard differentiable at D0 and uniformly bounded.

In Appendix B.5 we show that Assumption 4 holds for exponential weights considered in the following

sections. We now introduce the first theorem.

Theorem 3.1. Let Assumptions 1-4 hold. Let lim supT→∞ b(T )/
√
T <∞ and limT→∞ b(T )→∞. Then,

under the null hypothesis, whenever p <∞

sup
x

∣∣∣P(T ∗ − T ≤ x|Y1:T , X1:T , T0, H0)− P(T − E[T ] ≤ x|T0, H0)
∣∣∣ = op(1), for T0 ∝ T →∞.

Corollary (Size control). Let the conditions in Theorem 3.1 hold. Then limT→∞ P
(
φα(T ) = 1|H0

)
= α.

The above corollary follows from the validity of the bootstrap (see for example, Fang and Santos, 2018)

and it guarantees exact asymptotic coverage.

The proof of Theorem 3.1 is contained in Appendix B. Theorem 3.1 does not impose any restriction

on the predictor other than Hadamard differentiability. Conditions on Hadamard differentiability are

often imposed in the literature (Belloni et al., 2017), and require that weights are smooth functionals of

the data. These are satisfied under mild conditions, and simple examples of weights that satisfy such

conditions include least squares (Lunde and Shalizi, 2017) or exponential weights we discuss in Section 5

(see Appendix B.5 for a formal discussion). Note that the theorem is valid under misspecification.

It is interesting to observe that if we were doing classical statistical inference, we would need to

account for the estimation error generated by each individual prediction. Instead, the sample splitting

procedure in Algorithm 1 combined with the resampling method in Algorithm 2 guarantees valid inference,

and it overcomes the complicated generated regressor problem. The key intuition is that the empirical

distributions corresponding to the group of observations used for the training and those for the resampling

are asymptotically independent under standard mixing conditions. As a result, sample splitting guarantees

that we can condition on the initial training period F−, without affecting the asymptotic properties of the

bootstrap. In this sense, our analysis extends the standard sample-splitting procedures employed in the

i.i.d. setting (Rinaldo et al., 2019) to dependent observations.

Example 3.1 (Inference with the sample mean). For an illustrative example, consider the following simple

model:

Yjt = µ+ α1{t > T0, j = 0}+ εjt, E[εt|T0] = 0 ∀t,

12



Figure 1: The algorithm, in the presence of multiple post-treatment periods, works as follows: train
learners on an initial sample, compute the weights on a consecutive block of observations and then predict
the counterfactual. The green color denotes the pre-treatment period while the orange color denotes the
post-treatment period; bootstrap observations after imposing the null hypothesis.

and as estimator the difference-in-difference estimator

Ŷ0t =
1

|T−|
∑
s<0

Y0s,

where, for illustrative purposes, we use sample splitting for its construction.12 Our corresponding test

statistic takes the following form:

T =
1√

T − T0

∑
t>T0

∣∣∣ε0t − 1

|T−|
∑
s<0

ε0s + α
∣∣∣2.

It is interesting to compare to the test statistic obtained from the permutation based method. This con-

structs the estimated counterfactual using the sample mean over the time-window t ∈ {1, · · · , T0, · · · , T},

imposing a sharp null hypothesis (Chernozhukov et al., 2018). Its corresponding test statics takes the

following form

T c =
1√

T − T0

∑
t>T0

∣∣∣ε0t − 1

T

T∑
t=1

ε0t + (1− λ)α
∣∣∣2, λ =

T − T0
T

. (9)

To gain further intuition, let λ ≈ 1 (i.e., the post-treatment period is larger than the pre-treatment period).

Then, the distribution of T c, corresponding to the permutation-based approach, does not depend on the

treatment effect α, and therefore it cannot detect treatment effects. On the other hand, the dependence

of the test statistic T with α remains invariant as λ changes.

Remark 2 (Choice of the test statistics). Alternative test statistics can be constructed by taking the

k-norm of the residual error may also be considered (Chernozhukov et al., 2018),

(
(T − T0)−1/2

∑
t>T0

(
Y o
0t − Ŷ 0

0t

)k )1/k
,

12Note that we could also have taken 1
T0

∑T0
s=1 Y0s, since the difference in means is Hadamard differentiable, with

w(F0)g(Xt) =
∫
ydF0(y) with g(Xt) = 1.
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for a general k of the form. In this paper, the choice of T is motivated by two reasons: (i) the test statistics

well captures permanent effects (i.e., effects exhibited over each post-treatment period) compared to test

statistics having k > 2, which instead are better suited for the different case of large but temporary

treatment effects, as in the case of k =∞;13 (ii) the test statistic presents desirable differentiable properties

compared to the case of k = 1, which instead would not exhibit differentiability properties necessary for

the validity of the resampling mechanism (see, for example Fang and Santos, 2018).

Remark 3 (Testing the weak null hypothesis). Our framework for inference discussed in Section 3 also

extends to null hypothesis of the form

Havg
0 : E

[
Y 1
0t − Y 0

0t

]
= ao, ao ∈ R, t > T0.

While we omit details for brevity, we note that, in this secenario, the test statistics takes the form

TA =
(

(T − T0)
−1/2∑

t>T0

(
Y o
0t − Ŷ 0

0t

))2
. The test statistics is attractive in the presence of additive

treatment effects and small deviations,14 while the square (instead of the absolute value) guarantees

differentiability.

4 Average Treatment Effects, Bias Adjustment and Time-Varying Fixed

Effects

In applications, we may also be interested in estimating the average treatment effect consistently in

Definition 2.3. A direct corollary of Lemma 2.2 is that a simple treated and controls difference, under

standard mixing conditions, provides a consistent estimate of the treatment effect. However, such an

estimate can present significant variance since we do not control the variation captured by covariates Xt,

which can be non-vanishing with high-dimensional controls.

An alternative estimator for the average treatment effect takes the following form instead:

1

T − T0

∑
t>T0

(
Y0t − Ŷ 0

0t

)
.

Unfortunately, such an estimator may be inconsistent for the true τ , due to misspecification of the

functions g(x). We consider a bias adjustment instead.

The bias adjustment works as follows. Define F0,−1/2 the empirical distribution of (Yt, Xt) for t ∈
13This is of interest also in our empirical applications, where the effects of a decrease in expenditures in Medicaid is expected

to have long term effects on health-care outcomes, instead of large and temporary effects.
14See for example the discussion at Page 65 in Imbens and Rubin (2015).
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{1, · · · , T0/2}, and F0,1/2 the empirical distribution of (Yt, Xt) for t ∈ {T0/2 + 1, · · · , T0}. Then we

construct an estimator of the form

τ̂ =
1

T − T0

∑
t>T0

(
Y0t − Ŷ 0

0t

)
− 1

T0/2

T0∑
t=T0/2+1

(
Y0t − Ŷ 0

0t,−1

)
, Ŷ 0

0t,−1 = w(F0,−1/2)g(Xt) (10)

where Ŷ 0
0t,−1 is the estimator whose weights are constructed using only the first half of the treatment

period, and g is constructed as in Algorithm 1. The first difference is taken over the post-treatment

period, with weights computed over the entire pre-treatment period. The second difference is taken over

the second half of the pre-treatment period, but with weights computed over the first half. The second

difference defines the bias adjustment.

To gain further intuition on the bias adjustment, note that we can write

τ̂ = τ + op(1)−
∫ (

w(F0)g(x)− w(F0,−1/2)g(x)
)
d(F1(y, x)− F0,1/2(y, x))︸ ︷︷ ︸

=op(1)

where F1 denotes the empirical distribution over the treated period, F0,−1/2 denotes the empirical distri-

bution over the first half of the pre-treatment period, and F0,1/2 denotes the empirical distribution over

the second half. The above estimator is a difference in difference, where the first component converges to

τ while the second component is of order op(1) as shown in the following theorem.

We first impose the following condition.

Assumption 5 (Potential outcome Y 1
0t). Assume that

Y 1
0t = µ10t + ε10t, E[ε10t] = 0,

where µ10t <∞ denotes some (possibly non-stationary) expectation and ε10t is stationary.

Assumption 5 states that the potential outcome under control can be decomposed into two components:

a (possibly non-stationary) expectation and an additive stationary idiosyncratic shock. We can now

introduce the following theorem.

Theorem 4.1. Let Assumption 1, 2, 4, 5 holds. Assume that (ε10t, Y
0
0t, Xt) is β-mixing with mixing

coefficients
∑∞

k=1(k + 1)2β(k) <∞, with g(·;F−) uniformly bounded. Then τ̂ − τ →p 0.

Theorem 4.1 shows consistency of the estimated effect. It imposes standard mixing conditions. Its

proof is in Appendix B.
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4.1 Extension to Time-Varying Fixed Effects

In this section, we turn to the case where time-fixed effects occur and illustrate how our results extend to

this case without necessitating estimating the fixed effect.

We consider the following data generating process.

Assumption 6 (Fixed effects and Stationarity). Suppose that

Y 0
jt = κ0t + ι0j + ε0jt, E[ε0jt] = 0 j ∈ {0, · · · , n}, t ≤ T,

where ι0j < ∞, κ0t < ∞ denotes individual and time-fixed effect and (ε00t, ε
0
1t, · · · , ε0nt, Z0t, · · · , Znt) ∼ D,

define arbitrary unobservables and observables which follow a stationary process.

The above assumption allows for the failure of stationary as long as the time fixed effects are the same

between the control and treated unit. The following lemma illustrates identification for this case.

Lemma 4.2 (Identification of τ). Let Assumptions 2, 6 hold. Then

τ =
1

T − T0

∑
t>T0

{
E
[
Y 1
0t|T0

]
− 1

n

∑
j>0

E
[
Y 0
jt

∣∣∣T0]}− 1

T0

T0∑
s=1

{
E
[
Y 0
0s|T0

]
− 1

n

∑
j>0

E
[
Y 0
js

∣∣∣T0]}.
The above lemma shows that we can identify the treatment effect by taking a difference in difference.

The following lemma discusses testable implications for the sharp null hypothesis.

Lemma 4.3 (Sharp Null: Testable Implication). Under the null hypothesis in Equation (2) and Assump-

tions 2, 6 then (Y o
0t − Ȳt, Y1t − Ȳt, · · · , Ynt − Ȳt, Z0t, · · · , Znt) is stationarity and independent of T0 for all

t ∈ {1, · · · , T0, · · · , T}, with Ȳt = 1
n

∑n
j=1 Yjt.

The proofs of the above lemmas are in Appendix A. The counterfactuals’ estimation follows similarly

as before, with a minor modification: we subtract the controls’ average outcome from the outcome of the

treated unit and from the control unit to guarantee stationarity. This is illustrated below.

Ŷ 0
0t − Ȳt = w(F̃0)g(X̃t), Ȳt =

1

n

n∑
j=1

Yjt, X̃t =
(
Y1t − Ȳt, · · · , Ynt − Ȳt, Z0t, · · · , Znt

)
,

where F̃0 denotes the empirical distribution of (Y0t − Ȳt, X̃t) over the pre-treatment period. Here, Ȳt

denotes the time-specific average of the control units, but not of the treated. Theorem 3.1 and Theorem

4.1 directly follows once we subctract from the outcomes (Y0t, · · · , Ynt) the controls’ average Ȳt to guarantee

stationarity.
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5 Ensamble Weights and Prediction Guarantees under Non-stationarity

This section discusses a particular weighting scheme, exponential weights, and derives its properties in

terms of prediction guarantees.

5.1 Ensamble: Exponential weights

Although least-squares have been considered (see, e.g., Künzel et al., 2019; Polley and Van Der Laan,

2010; Elliott and Timmermann, 2004), these can perform poorly when the number of learners is large

compared to the sample size.15 Equal weighting, on the other hand, can perform poorly in the presence of

many uninformative learners. To equip the method to have a better performance in the presence of a large

number of algorithms, some of which may potentially be ineffective, we discuss an alternative weighting

scheme.

With a slight abuse of notation, we index weights by the time period as w(t), with t ∈ {1, · · · , T0}.

For example w(t̃) denotes the weight estimated using the empirical distribution from time t = 1 to time

t = t̃.

The weigthing scheme we focus are exponential weights of the following form: we write

w(j)(T0) =

exp

{
−η
∑T0

s=1

(
Y0s − gj(Xs)

)2}
∑p

i=1 exp

{
−η
∑T0

s=1

(
Y0s − gi(Xs)

)2} . (11)

Such weights have been widely discussed in literature on exponential aggregation, see e.g., Cesa-Bianchi

et al. (1999), Rigollet et al. (2012) among others.

By choosing the tuning parameter η ∝ 1/T0 exponential weights can be written as differentiable

functionals of F0. This is discussed in Appendix B.5.

We can motivate Equation (11) as the solution to a penalized surrogate risk minimization, discussed

below.

Example 5.1 (Model average as a surrogate risk minimization problem). Consider the following opti-

mization problem (e.g., Rigollet et al., 2012)

minw∈W{
T0∑
t=1

wj(Y0t −
p∑
j=1

gj(Xt))
2 + pen(w)}, W = {w ∈ Rp : wj ≥ 0;

p∑
j=1

wj = 1},

15Observe that weights computed via least-squares are Hadamard differentiable (Lunde and Shalizi, 2017), hence satisfying
the conditions in Theorem 3.1.
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where pen(w) denotes a penalty on the weights. Under convexity of the loss function, the above optimiza-

tion problem is interpreted as minimizing a surrogate loss function of the penalized empirical risk.16 By

letting pen(w) = 1
η

∑p
j=1wj log(wj), the solution to the problem reads as

w(j)(T0) =
exp(−η

∑T0
t=1(Y0t − gj(Xt))

2)∑p
i=1 exp(−η

∑T0
t=1(Y0t − gi(Xt))2)

. (12)

Intuitively, the method assigns larger weights to those predictors that have the lowest out-of-sample loss

function. These weights inherit oracle guarantees discussed in Section 5.2.

5.2 Prediction Guarantees

We now derive prediction guarantees of the exponential weights without imposing stationarity conditions.

Our result illustrates oracle guarantees of the exponential aggregation method (Cesa-Bianchi and Lugosi,

2006), here applied to the different contexts of counterfactual prediction.

We study the behavior of our algorithm trained only on t − 1 observation and evaluated at the th

observation, i.e., we are willing to provide theoretical guarantees on the following cumulative loss.

T−10

T0∑
t=1

(Ŷ 0
0t(Ft−1)− Y 0

0t)
2, (13)

where Ŷ 0
t (Ft−1) = w(t− 1)g(Xt). Here, Ŷ 0

0t(Ft−1) denotes the prediction at time t using only information

at time t− 1. Since Ŷ 0
0t(Ft−1) is estimated only on the previous data and evaluated at Xt, this notion of

performance is rooted in out-of-sample performance metric.

We first study the cumulative loss in (13) compared to the smallest cumulative loss incurred by any

of the algorithms under consideration, defined as

R = T−10

T0∑
t=1

(Ŷ 0
t (Ft−1)− Y 0

0t)
2 − min

i∈{1,...,p}
T−10

T0∑
t=1

(gi(Xt)− Y 0
0t)

2.

In the following theorem, we consider the case where T0 = λT where λ ∈ (γ, 1 − γ) is potentially a

random variable for some constant γ > 0.

Theorem 5.1. Suppose that (Y0t, g(Xt)) ∈ [−M,M ]p+1, for some M < ∞. Consider an exponential

weighting scheme as in (11) with η ∝
√

log(p)/T0. Then with probability at least 1−2δ, R ≤ C0

√
log(p/δ)

γT
for C0 <∞ being a constant independent of T0 or p.

16Observe that we can write the risk as {
∑T0

t=1 l(Y0t,
∑p

j=1 wjfj,t)+pen(w)} where, by convexity,
∑p

j=1 wj l(Y0t,
∑p

j=1 fj,t) ≥
l(Y0t,

∑p
j=1 wjfj,t). Surrogacy is often considered in decision problem for its computational appeals.
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The proof is presented in Appendix C.

Theorem 5.2 provides an error bound for the empirical one step ahead prediction error. Remarkably,

it does not require any stationarity assumption. The bound scales logarithmically with the number of

learners, and it scales at square-root T with the length of the sequence.

In the following lines, we provide stronger guarantees with respect to the conditional expectation of Y 0
0t.

For the next theorem to hold, we need to introduce an additional condition, which replaces Assumptions

1 and 2 that we imposed in previous sections.

Assumption 7. (Additive Error Model and Sequential Ignorability) Let the following hold

Y 0
0t = µt(Xt) + ε0t. (14)

where E[ε0t|Xt,Ft−1] = 0. Assume in addition that ε0t ⊥ T0|Xt,Ft−1, where Ft−1 denotes the filtration

at time t− 1.

Assumption 7 states that the potential outcome can be decomposed into two main components, a

conditional expectation function µt(·) and idiosyncratic shocks. Note that such a condition is only required

to derive guarantees with respect to µt(·). It is natural to compare the cumulative loss in (13) with the

smallest cumulative loss incurred by any of the algorithms under consideration. We define such a metric

of comparison as the Conditional Mean Proxy Regret (CMPR).

Rµ = T−10

T0∑
t=1

(Ŷ 0
t (Ft−1)− µt(Xt))

2 − min
i∈{1,...,p}

T−10

T0∑
t=1

(gi(Xt)− µt(Xt))
2.

The above definition incorporates notions of performance with respect to the conditional mean function (as

opposed to the outcome itself). Our definitions above combine definitions in the literature on prediction

of individual sequences (Cesa-Bianchi et al., 1999) with the literature on causal inference. The main

difference with standard notions of regret is that CMPR is based on the unobserved deviation of the

predicted counterfactual from the conditional mean evaluated at Xt, and not just on the cumulative loss

of the predictor

Theorem 5.2. Let Assumption 7 hold and let (Y0t, µt(Xt), g(Xt)) ∈ [−M,M ]p+2, for some M < ∞.

Consider an exponential weighting scheme as in (11) with η ∝
√

log(p)/T0. Then with probability at least

1− 2δ,

Rµ ≤ C0

√
log(p/δ)

γT
,

for C0 being a constant independent of T0 or p.
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The proof is presented in Appendix C.

Theorem 5.2 provides an error bound for the empirical one step ahead prediction error with respect to

the conditional mean.

If we are willing to assume more, in that our class of algorithms contains one learner that consistently

estimates the unknown model, then previous results imply that our synthetic learner will preserve that

consistency regardless of the number of learners in the entire class. We consider below asymptotics for

T →∞ and T0 = λT where λ ∈ (0, 1) is potentially a random variable.

Corollary. Suppose that the number of learners is such that log(p)/T 1/2 = o(1) and conditions in Theorem

5.2 hold. Assume also that the following holds mini∈{1,...,p} T
−1
0

∑T0
t=1 |µt(Xt)− gi(Xt)|2 = op(1). Then,

T−10

T0∑
t=1

(Ŷ 0
t (Ft−1)− µt(Xt))

2 = op(1).

for T →∞, T0 = λT .

6 Numerical Experiments

In this section, we study the performance of the method in the presence of linear and non-linear outcome

models, allowing for the presence of many non-informative methods. We compare the methodology to

existing testing procedures, including permutation tests of Synthetic Control as well as the Difference-in-

Difference method, and showcase a significant improvement.

6.1 Experimental Setups

We describe our experiments in terms of the outcome model as well as the model of the design of the

covariates and the error terms. In our first experiment, DGP1, we considered a simple Linear Outcome

Model

Y0t = Xtβ + atDt + εt

and tested the ability of our method to detect changes in the treatment effect at. This example is intended

to model a setting where classical Synthetic Control method is optimal. Here we set βj = 1/(1 + j)2,

j = 1, . . . , p, with the last beta chosen such that
∑

j βj = 1, where we consider p ∈ {10, 50}. The

parameter β will be kept as above for all our experiments. We considered a simple ar model for the errors

εt with εt = 0.6εt−1 + vt and vt ∼ N (0, 1− 0.62). Control units are generated according to a factor model
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as

Xj,t = µj + θt + λjFt + ut

with unit specific term λj = µj = (1 + j)/j a time random effect θt ∼ N (0, 1) and an unobserved factors

Ft ∼ N (0, 1). Errors ut follow an ar model ut = 0.6ut−1 + ht with ht ∼ N (0, 1 − 0.62). In our second

experiment, DGP2, we considered a Logistic-like Outcome Model

Y0t = atDt + exp(Xtβ + εt)/(1 + exp(Xtβ + εt))

with εt = 0.5εt−1 + 0.3vt−1 + vt. This experiment has three settings: (a), (b) and (c). Setting (a) and (b)

assume vt ∼ N (0, σ2) with (a)σ = 0.1 and (b)σ = 1, respectively. Setting (c) assumes εt = 0.8εt−1 + vt,

with vt =
√
htzt, ht = 0.001+0.99v2t−1 with zt ∼ N (0, 1)(ar-arch process). We report here (a) and (b).

In addition we let Xt = ht + ut with ht being i.i.d over time with N (0,Σ) distribution with Σi,j = 0.5|i−j|

and ut = 0.8ut−1 + kt with kt ∼ N (0, 1− 0.82). This setting is designed to test the ability of the proposed

Synthetic Learner to adapt to nonlinear outcome model. We consider our third setting, DGP3, that

follows a factor model

Y0t = 0.5 + atDt + θt + 0.5Ft + εt.

Error and design structures are the same as that of DGP1. DGP4 considers an interaction outcome

model that is polynomial in structure

Y0t = atDt + (X1,t +X2,t + · · ·+X10,t)
2 + εt

with εt being the same as in DGP2(a) design Xt is the same as throughout DGP2; DGP5 postulates a

cosine, hence periodic, type of outcome model

Y0t = cos(Xtβ + εt) + atDt.

Error and design setting have three components: (a), (b) and (c) that are following the setup of DGP2

(a), (b) and (c), respectively. Finally, DGP6 is a simple non-stationary model, which follows similarly

to DGP3, but with Ft ∼ N (cos(t), 1), with cos(t) capturing a non-stationary component.17 As discussed

in the following subsections, we choose p = 10 for smaller T (T ∈ {60, 80, 100}) and p = 50 for larger

T ≥ 300.

17Note that the component cannot be removed from simple transformations such as differentiating.
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6.2 Testing

We consider testing the following hypothesis H0:

H0 : Y 1
0t − Y 0

0t = 0, t > T0.

We consider the Synthetic Learner with experts, including a naive XGboost (which uses the default tuning

parameter of the package XGboost in R), Support Vector Regression, and arima(0,1,1) with external

regressors together with 50 non-informative learners. Non-informative experts are randomly drawn from

a multivariate gaussian with a full covariance matrix.

6.2.1 Power Study: Comparison with SC and DID

First, we compare Synthetic Learner’s performance to existing procedures whose theoretical properties

are well studied. In particular, we compare the Synthetic Control (SC) with weights being constrained to

sum to one and an intercept according to Equation (7) and (8) in Chernozhukov et al. (2021), as well as

the Difference in Difference (DiD) estimator, namely

Ŷ DiD
t = α̂+ (β̂ + ∆̂)1t>T0

with coefficient computed as in a standard DiD with the two periods corresponding to pre and post-

treatment periods. We consider the test statistics for Synthetic Control

1√
T − T0

T∑
t=T0+1

|Y0t − aot −Xtŵ
0
SC |2 (15)

where ŵ0
SC are computed via constrained Least Squares, with coefficients summing to one for Synthetic

Control. Finally, we consider

1√
T − T0

T∑
t=T0+1

|Y0t − aot − Ŷ DiD
t |2 (16)

for Difference-in-Differences. In Figures 2, 3 and 4 we compare the performance of our method to per-

mutation tests where ŵSC and Ŷ DiD
t must be computed on the entire sample, as described in Cher-

nozhukov et al. (2021). We run the Synthetic Learner after training on the period running from 1 to

T− = T0/2, T ∈ {60, 100}, p = 10, T − T0 = 10, and we use the remaining observations for computing

weights and bootstrap. We consider different treatment effects, denoted by α, and report on the x-axis

the effect of the policy α divided by the (unconditional) standard deviation of the outcome.
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We present power plots across different T in Figures 2, and 4 for T = 60 and T = 100 respectively, while

Figure 3 collects results for the non-stationary DGP. Across all figures, we observe an improvement over

permutation tests with both SC and DiD methods, with more significant improvements for the non-linear

DGPs.

Improvements can be due to two factors: bootstrap outperforming permutation as well as Synthetic

Learner’s better performance in comparison to SC and DiD. Table 3 (see the discussion below) and

Appendix E.3 provide suggestive evidence that improvements are due to both factors.

In particular, in Appendix E.3 we also consider the oracle case where the critical value is known. This

case permits to compute ŵSC and Ŷ DiD
t only using information until time T0, as discussed in Doudchenko

and Imbens (2016). We show improvements also in this setting. In Appendix E.2, we report a more

extensive study with T0 and T − T0 vary and show the robustness of our results to different settings.

6.2.2 Size Control

Next, we study the size of our procedure for T ∈ {60, 80} and T ∗ = T − T0 ∈ {5, 10, 20}, as we vary the

post-treatment period from small to longer post-treatment period. These are reported in Table 1. We

observe that in a finite sample, for T relatively small, our test controls size across all DGP, except DGP3

and DGP6, where we observe a small size distortion of five percentage points for a short post-treatment

period (T ∗ = 5). These results provide suggestive evidence of the correct size of the proposed test also in

a finite sample.

Table 1: Size of the Synthetic Learner for T ∈ {60, 80} and varying post-treatment period length T ∗, for
tests with size 5%. The first panel reports the size for T = 60 and the second panel for T = 80.

T = 60 T = 80

T ∗ = 5 T ∗ = 10 T ∗ = 20 T ∗ = 5 T ∗ = 10 T ∗ = 20

DGP1 0.087 0.063 0.037 0.077 0.063 0.030
DGP2(a) 0.037 0.017 0.023 0.050 0.053 0.037
DGP2(b) 0.053 0.027 0.013 0.080 0.080 0.023
DGP2(c) 0.063 0.043 0.033 0.080 0.070 0.033

DGP3 0.090 0.087 0.050 0.097 0.060 0.040
DGP4(a) 0.060 0.040 0.027 0.040 0.063 0.033
DGP4(b) 0.067 0.047 0.040 0.090 0.053 0.043
DGP4(c) 0.080 0.057 0.037 0.057 0.067 0.020
DGP5(a) 0.073 0.047 0.020 0.060 0.077 0.037
DGP5(b) 0.050 0.063 0.027 0.067 0.043 0.030
DGP5(c) 0.103 0.040 0.020 0.060 0.057 0.040

DGP6 0.090 0.070 0.090 0.107 0.067 0.040
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Figure 2: T = 60, p = 10, T0 = 50. Percentage of rejections of the null hypothesis of no treatment effects
over 300 repetitions. The x-axis reports the policy’s effect rescaled by the outcome’s standard devia-
tion. Synthetic learner has XGboost,Support Vector Regression and arima(0,1,1) and 50 additional non
informative predictions. The blue line denotes the proposed method, the red line denotes the difference-
in-differences, and the green line denotes the Synthetic Control.

6.2.3 Oracle Study: Learners’ performance

In Table 2 we study the performance of the algorithm and each base algorithm for T = 60, T − T0 = 10.

Table 2 reports the power of each base algorithm and its corresponding weight assigned by the Synthetic

Learner. We observe two striking facts: first, the largest weight is assigned to the best performing

algorithm; second, the Synthetic Learner always performs approximately the same or better than any base

algorithm under consideration. This result suggests the benefits of the ensemble procedure: the procedure

combines predictions of different methods to maximize prediction (and ultimately power) optimally. For
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Figure 3: DGP6, T ∈ {60, 100}, p = 10. Percentage of rejections of the null hypothesis of no treatment
effects over 300 repetitions. The x-axis reports the policy’s effect rescaled by the outcome’s standard
deviation. Synthetic learner has XGboost,Support Vector Regression and arima(0,1,1) and 50 addi-
tional non informative predictions. The blue line denotes the proposed method, the red line denotes the
difference-in-differences, and green line denotes the Synthetic Control.
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Figure 4: T = 100, p = 10 Percentage of rejections of the null hypothesis of no treatment effects over 300
repetitions. The x-axis reports the policy’s effect rescaled by the outcome’s standard deviation. Synthetic
learner has XGboost,Support Vector Regression and arima(0,1,1) and 50 additional non informative
predictions. The blue line denotes the proposed method, the red line denotes the difference-in-differences,
and the green line denotes the Synthetic Control.

the sake of brevity, we report results for two linear DGPs (DGP1 and DGP2) and two non-linear ones.
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Table 2: T = 60, p = 10. Power of the Synthetic Learner and of each base algorithm. In each panel, the
first two columns report the power for α ∈ {0.1, 0.3}, and the third column reports the assigned weight of
the Synthetic Learner.

DGP1(a) DGP2(a)
0.1 0.3 Weights 0.1 0.3 Weights

Synthetic Learner 0.070 0.110 0.210 0.910
XGBoost 0.030 0.047 0.153 0.157 0.823 0.345

SVM 0.040 0.037 0.044 0.213 0.910 0.375
Arima 0.060 0.103 0.803 0.163 0.693 0.280

DGP2(b) DGP3(a)
0.1 0.3 Weights 0.1 0.3 Weights

Synthetic Learner 0.030 0.036 0.080 0.143
XGBoost 0.020 0.023 0.132 0.053 0.056 0.217

SVM 0.030 0.033 0.831 0.057 0.050 0.091
Arima 0.020 0.026 0.037 0.057 0.106 0.693

6.2.4 Endogenous time of intervention

Next, we study the problem in the presence of an endogenous time of the treatment. In Figure 5 we report

a representative set of results under the endogenous time of the treatment, where we simulate

T0 = 280 + min{50, 1 + (exp(1/λ)− 1/λ) ∨ 1}

where we choose λ = |
∑

j,tXj,t|. The model follows a proportional hazard type model, similar to what

is discussed in Shaikh and Toulis (2019), centered on T0 = 281, with the time of treatment depending on

other units’ outcomes and constrained between 281 and 320. Figure 5 collects results with an endogenous

time of treatment when critical quantiles are estimated via resampling, where the confidence intervals for

the Synthetic Control and DiD are constructed using the permutation-based method in Chernozhukov

et al. (2021). Results are consistent with the case of an exogenous treatment timing.

6.2.5 Variability in the quality of the learners

Next, we study the variability of the proposed method concerning the number and quality of learners

included in learners’ classes. We consider four different variations of the Synthetic Learner: Exponential

and Least Squares weighting with 10 and 100 new non-informative learners. To guarantee the feasibility of

the optimization problem given a large number of learners, we consider a large T = 300. Figure 6 contains

the results. There we observe that many non-informative learners do little to nothing to the proposed
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Figure 5: Percentage of rejections over 500 repetitions with T = 400, T0 = 280, p = 50 and T− = 140
when the critical quantile is estimated via resampling and the time of treatment is endogenous. The x-axis
reports the policy’s effect rescaled by the outcome’s standard deviation.

Synthetic Learner. In sharp contrast, Least Squares’ weighting suffers a substantial loss in power when

the number of non-informative learners is increased.
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Figure 6: Percentage of rejections of null hypothesis H0 over 500 repetitions with T = 300, T0 = 280,
J = 50 and T− = 140, p = 50. The x-axis reports the policy’s effect rescaled by the outcome’s standard
deviation. As base learner we consider XGboost, Support Vector Regression, arima(0,1,1) and either
100 or 10 additional non informative learners(NIL). We denote exp SL as the Synthetic Learner using
exponential weights and LS SL as the Synthetic Learner using Least Squares weights.

6.2.6 Bootstrap vs permutations

We compare the performance of the circular bootstrap against permutations proposed in Chernozhukov

et al. (2021). We consider only one learner: OLS. We compute the OLS coefficient for the bootstrap
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method using only the first T0/2 observations, and we bootstrap the remaining ones. We estimate the

full sample’s coefficient for the permutation method after imposing the null hypothesis of no effect. We

consider the true effect is either αt = 0.2 or αt = 0.3. We vary T ∈ {60, 80} and we consider T − T0 = 10.

Results are collected in Table 3. For the non-linear design, we mostly observe significant improvements

in power, up to approximately fifty percentage points. Only for a few designs we observe comparable

performances or slightly inferior by one to three percentage points.

Table 3: We compare the percentage of rejection of the sharp null hypothesis αot = 0 over 300 replications.
We use the bootstrap method, while rejections via permutations are presented in the parenthesis. We
predict the counterfactuals only using Least Squares. α denote the true policy effect. T0 = T − 10.

T = 80 T = 60
α = 0.2 α = 0.3 α = 0.2 α = 0.3

DGP1 0.090(0.040) 0.107(0.067) 0.073(0.037) 0.057(0.060)
DGP2(a) 0.697(0.507) 0.940(0.793) 0.420(0.317) 0.747(0.667)
DGP2(b) 0.030(0.067) 0.040(0.087) 0.040(0.047) 0.030(0.070)
DGP2(c) 0.690(0.167) 0.833(0.303) 0.430(0.177) 0.567(0.253)

DGP3 0.033(0.050) 0.047(0.023) 0.030(0.027) 0.037(0.053)
DGP4(a) 0.143(0.087) 0.300(0.280) 0.113(0.107) 0.213(0.203)
DGP4(b) 0.070(0.040) 0.090(0.077) 0.043(0.053) 0.063(0.037)
DGP4(c) 0.180(0.063) 0.297(0.173) 0.110(0.080) 0.230(0.187)

DGP5 0.113(0.077) 0.167(0.133) 0.057(0.050) 0.127(0.057)
DGP6 0.027(0.060) 0.057(0.060) 0.033(0.027) 0.047(0.067)

7 The Effect of Public Health Insurance Ineligibility on Access to Med-

ical Care

Understanding the effect of public health insurance coverage on health care access is a major concern in

health economics (Kolstad and Kowalski, 2012; Long et al., 2009; Baicker et al., 2013; Anderson et al.,

2012; Garthwaite et al., 2014).

The TennCare dis-enrollment program represents the largest reduction in public health insurance

coverage ever experienced in the US. Between 2005 and 2006, approximately 170,000 individuals lost

public health insurance coverage. Most of these individuals were childless adults who gained public health

insurance coverage approximately ten years before, in 1994, during the Medicaid program expansion in

Tennessee. In this section, we study the effect of the reform over childless adults on delayed medical care

access due to medical costs. This population is of particular interest since most of the Affordable Care

Act expansions target childless adults. Tello-Trillo (2021) estimates that the TennCare dis-enrollment
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significantly decreased the likelihood of having health insurance between 2 and 5 percent. The author

estimates an increase of between two and three percentage points in the probability of not going to a

medical center when sick.18 Our analysis provides supportive evidence for the claim, with positive effects

ranging between one and five percentage points but with higher uncertainty in the absence of stationary.

Details are discussed in the following lines.

7.1 Data

We use BFRSS data19 to investigate the effect of the reform on the percentage of people who cannot

afford healthcare expenses for medical costs. BFRSS is a national survey that has been continuously run

over the years since 1984. The survey contains individual-specific information, including residence, state

of health, access to health coverage, and others. The survey is run on a rolling basis, and the dataset can

be organized as a long sequence of monthly and quarterly observations since we can cluster observations

by the date of the interview. On average, we observe 150 childless adults between 18 and 64 years old in

Tennessee per month from 2017 to 1993. To overcome survey variability, we aggregate data at a quarter

level. The outcome variable is the percentage of childless adults who answered yes to the following survey

question:“Was there a time in the past 12 months when you needed to see a doctor but could not because

of the cost?”.

Figure 7: Sample distribution of childless adults between 18 and 64 years old in Tennessee, the Southern
States, and the US who were not able to afford health care expenses (left panel) and who are covered by
health insurance (right panel). BFRSS data.

In Figure 7, we report the distribution of respondents who were not able to afford medical costs in

the past 12 months(left panel) and who are covered by health insurance20(right panel), after clustering

18The reader might refer to Panel C, Table 5 in Tello-Trillo (2021).
19Behavioral Risk Factor Surveillance System Data: https://www.cdc.gov/brfss/annual data/annual data.htm.
20For the latter questions, we count the number of individuals who answer yes to the question: “Do you have any kind
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Figure 8: BRFFS data. Percentage of adults in Tennessee (treated unit, red) and Southern States (control,
blue) who could not afford health care from January 1993 to December 2017.

over the period 1993-2005, 2006-2012 and 2013-2017 for Tennessee, other Southern States, and the United

States. We observe a shift in the mean of Tennessee’s outcome over these three periods, with a larger

shift in the period just after the policy, between 2006 and 2012, while the variance remains approximately

stable.

To check for stationarity of observed time-series, we test for unit roots at 95% confidence level. We

reject the null hypothesis of a unit root in the time series of interest displayed in Figure 8.21 However, we

warn the reader that a lack of stationarity or confounders may invalidate the analysis. To accommodate

failures of stationarity in the presence of time-varying fixed effects, we consider two alternative estimators

with and without fixed effects adjustments, as discussed in the following subsection.

7.2 Estimation

As proposed in the Synthetic Control literature (Abadie et al., 2010), we impute the potential outcome

under no dis-enrollment using a set of control variables in the other states. The starting date of the

treatment corresponds to the second half of 2005.22

While the dis-enrollment program may be mostly attributable to an exogenous budget deficit (Argys

et al., 2020), the series may still be affected by confounding sources over the period study, one of which is

Obamacare’s launch in 2014.23 To control for potential confounders related to Obamacare, we consider as

the post-treatment period the series until t = 2014, while we replicate the analysis also including periods

of health care coverage, including health insurance, prepaid plans such as HMOs, or government plans such as Medicare or
Indian Health Service?” We consider observations who answer “I do not know” as not having a plan.

21We use an Augmented Dickey-Fuller test, with constant and without time trend, and include one, two, or three lags.
P-values are respectively < 0.01 for the first two tests and 0.05 for the latter.

22The overall dis-enrollment started in July 2005, and it lasted until June 2006. Most childless adults who dis-enrolled
during this period were not able to requalify for Medicare (Garthwaite et al., 2014).

23The Affordable Health Care Act, also known as Obama Care, was officially approved in 2010, but the major change
entered into force in 2014.
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until 2017 in Appendix F. The selection into Obamacare from the states may reflect structural differences

among different states. Motivated by this observation, we use a pool of control units only those Southern

States that, similarly to Tennessee, did not expand Medicaid between 2010 and 2014, namely South and

North Carolina, Mississippi, Alabama, Florida, and Georgia. In the Appendix, we replicate the analysis

with all the states.

We construct the “Synthetic Control” using the Synthetic Learner described in the current paper. We

consider the share of individuals in other countries who could not afford necessary health care expenses

as control variables. To allow for time-varying fixed effects, we consider two variations of the Synthetic

Learner, with and without fixed effects adjustments (see Section 4.1). We refer to the Synthetic Learner

with fixed effect adjustment as “Demeaned Synthetic Learner” and SL otherwise.

We train Random Forest, Lasso, and a Factor model24, and Diff-in-Diff mean proxy as discussed in

Doudchenko and Imbens (2016) as base predictors.

Random Forest also contains additional covariates, such as the employment level in each state. Hy-

perparameters for the base predictors are chosen via cross-validation within the sample used to train

such predictors. We construct weights with a tuning parameter η = 1√
TVar(Yt)

where the rescaling by

the variance guarantees that the estimated weights are scale-invariant.25 In Appendix F, we show the

robustness of our results for several other choices of η. We consider two alternative sample splitting rules.

First, observations between 1998 and 2006 are used to train the algorithms; observations between 1993

and 1997 are used to compute the weights and bootstrap. Second, the reverse is considered, where the

training occurs over the earliest pre-treatment period. Observations from January 2006 onwards are used

to compute the test statistic.

7.3 Results

In Table 4 we report the estimated test statistic for testing the null hypothesis of no effect, namely

H0 : Y 1
0t − Y 0

0t = 0, t > T0, over the post-treatment period 2010-2014. The table reports the critical

quantiles, the test statistic, and the estimated ATT when predictors are trained on the period closest to

the post-treatment period (Period 1) or an earlier period (Period 2). The ATT oscillates between one and

four percentage points, and its sign remains robust throughout all the setups considered. Significant effects

are detected when training predictors on Period 1 for the test with a size of ten percent for Synthetic

24To guarantee the validity of the algorithm through the sample splitting procedure, the factor model consists of estimating
the principal component over the training period, regressing the principal component on the control states over the training
period and making counterfactual predictions using the predicted factor on the remaining periods.

25Since the loss is the squared loss, by rescaling by the variance we have losses of the form (Yt−Ŷt)
2/Var(Yt) = (Yt/SD(Yt)−

Ŷt/SD(Yt))
2 which are unit free in the outcome’s unit. We rescale by 1/

√
T following the theoretical results of predictions.

In the Appendix, we report results also after choosing different rescaling.
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Learner. When estimating treatment effects by training the predictors more distant from the treatment

timing (Period 2), results become non-significant, possibly reflecting higher uncertainty. Similarly, when

we consider the adjustment for fixed effects, we observe p-values close to or larger than twenty percent,

suggesting higher uncertainty for this case.

The Synthetic Learner predicts an effect larger than Lasso’s one but smaller than a factor model. The

reader may refer to the Appendix for further details. In Appendix F, we report results over the period

2010-2017, showing attenuated results over the time window 2010-2017.

Table 4: 90% and 80% critical values, t-statistic, and ATT using the southern states as controls. The effect
estimated is over the time window 2010-2014 (first row), and consecutive windows 2011-2014 (m = 1yr),
2012-2014 (m = 2yr), 2013-2014 (m = 3yr). Period 1 collects results when learners are estimated using the
window between 1998-2006, and weights are estimated over the period 1993-1997. Period 2 corresponds
to the opposite scenario. Demeaned SL denotes the SL with time-varying fixed effects.

Period 1 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.332 1.249 1.354 1.844 0.903 0.846 0.836 0.994
m = 1yr 1.261 1.176 1.281 1.998 0.794 0.745 0.729 1.060
m = 2yr 1.217 1.133 1.273 2.166 0.758 0.711 0.696 1.104
m = 3yr 1.160 1.070 1.229 2.253 0.714 0.664 0.651 1.096

Period 2 SL Demeaned SL
CV90 CV80 t stat ATT CV90 CV80 t stat ATT

m = 0 1.264 1.173 0.691 5.223 0.519 0.471 0.243 3.137
m = 1yr 1.211 1.118 0.622 5.362 0.460 0.415 0.163 3.142
m = 2yr 1.189 1.100 0.625 5.516 0.453 0.407 0.154 3.202
m = 3yr 1.154 1.060 0.611 5.587 0.450 0.404 0.149 3.197

In Table 5 we collect the weights assigned to each base-algorithm. We observe that the Synthetic

Learner assigns a larger weight to Lasso in the absence of fixed effects, and a larger weight to Random

Forest in the presence of fixed effects.

Table 5: Weights estimated by the Synthetic Learner and by the Synthetic Learner after subtracting the
control’s mean to allow for fixed effects over Period 1.

Synthetic Learner Demeaned Synthetic Learner

Factor 0.242 0.202
CV Lasso 0.298 0.253

Random Forest 0.243 0.295
DID 0.217 0.251

In Figure 9, we report the test statistics and the acceptance region for Tennessee and for placebo
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tests performed on the other Southern States that did not adopt Medicaid expansion. A placebo test

consists of testing a policy’s effect from 2006 to 2014 in a state different from Tennessee. Since none of

the other Southern States had significant changes in the Medicaid system, we would expect no rejections

for all Southern States except Tennessee. This is shown in Figure 9. We observe that we do not reject the

null hypothesis when using only the simple DiD method, potentially due to the underpowered test. This

result is consistent with what we observed in simulations, where the synthetic learner outperformed other

methods in terms of power.

Figure 9: We test significant changes in the percentage of childless adults who are not able to afford
medical expenses in those Southern states that did not adopt Medicaid Obamacare. We report the test
statistic (red dot) and 90% confidence region for each of the states, including Tennessee, over Period 1.
Left-panel reports the test when using Synthetic Learner. Right panel when only using Difference in
Differences to predict the counterfactual.

7.4 Discussion: Assumptions and Possible Sources of Confounding

We conclude this section with a discussion on the assumptions and possible sources of confounding. The

Tennessee dis-enrollment program was a result of a budget deficit. Whenever the budget deficit was

due to an exogenous variation (Argys et al., 2020), the variation in state-level Medicaid expenses can be

interpreted as exogenous to childless adults’ financial status validating the exogeneity of the treatment

timing. In this scenario, the ATT estimator is a consistent estimator of the underlying treatment effect.

However, this condition may not necessarily hold. For instance, the budget deficit may be attributed to

the increase in Medicaid expenses in previous years (Garthwaite et al., 2014), which may itself depend on

individuals’ past average income. In such a case, exogeneity may be replaced by conditional exogeneity

given the past filtration without violating the prediction guarantees of the proposed algorithm.

The results of our testing procedure should instead be interpreted as conditional on the treatment

assignment mechanism, similar to what is discussed in Ferman and Pinto (2016). Here, the assumption

of stationarity may fail if, for example, spillover effects of the dis-enrollment program occur over adjacent
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states, therefore changing the distribution of control units (see the discussion in Appendix D.1). While

the study of Synthetic controls under spillovers goes beyond this paper’s scope, we observe that in this

scenario, it may be necessary to estimate counterfactuals also on the other states, which may be affected

by the policy intervention.

Confounding may also result from other events, such as the 1996 Clinton welfare reform and the great

depression. In the former case, although the reform in Tennessee was targeted at families with children

(so-called Family First policies26), which are excluded from our analysis, it may act as a confounder in

our analysis in the presence of general equilibrium effects. Time-fixed effects can (partially) accommodate

for these cases if the confounder affects the mean only, and the effect is homogenous across the states

considered in our analysis. These restrictions motivate studies that focus on sets of control units most

similar to the treated, which, in our case, correspond to a subset of Southern States.

8 Extension: Carry-over Effects

In many applications, treatment effects may carry over in time (Imai and Kim, 2021). Here we extend

the proposed framework to carry-over effects as follows. We consider binary treatment and denote the

treatment path up to time t as a vector d1:t ∈ {0, 1}t. Following the potential outcomes framework,

we then posit the existence of potential outcomes Ỹ0t(d1:t), corresponding respectively to the response

the treated subject would have experienced at time t while being exposed to the treatment assignment

contained in the treatment path d1:t. Formulating treatments and potential outcomes as paths were

introduced initially by Robins (1986).

Notation implicitly assumes no lead effects (Athey and Imbens, 2022). Also, we require that the

realizations of potential outcomes do not depend on past m lags or more. Using the same notation as in

Rambachan and Shephard (2019), for t ∈ {T−, . . . , 0, 1, . . . , T0, . . . , T} we assume throughout the rest of

this paper that the following holds.

Assumption 8 (Finite carry-over). For all dT−:t, Ỹ0t(dT−:t) = Y0t(dt, · · · ,dt−m), for some function Y0t(·)

The assumption explicitely defines carry-over effects of size m. The no-anticipation assumption has

been previously discussed in Abbring and Heckman (2007), Athey and Imbens (2022), while the restricted

carryover effect is analogous to the identification assumption stated in Imai et al. (2018), Iavor Bojinov

(2019), Blackwell and Glynn (2018) among others. The estimand of interest is now defined as follows

E
[
Y0t(1)− Y0t(0)

]
, t > T0 +m

26The reader may refer to https://haslam.utk.edu/sites/default/files/ffoct00.pdf.
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which denotes the (long-run) ATT, comparing two policies always and never implemented.

The key idea in this setting consists in estimating treatment effects after removing the m lag compo-

nents. Formally, we construct an ATT estimator of the form

ÂTTm = (T − T0)−1
∑

t>T0+m

(Y 1
0t − Ŷ 0

0t)− (T0/2)−1
T0∑

t=T0/2+1

(Y 0
0t − Ŷ 0

0t,−1) (17)

where the estimator averages after m periods that the policy has been implemented. Our testing procedure

remains invariant (and valid) after removing the periods t ∈ {T0, · · · , T0 +m}.

Example 8.1 (Why considering carry-overs?). Wrongly assuming the absence of carry-over effects can

lead to misspecified causal estimands and hence possibly biased estimates. For example, consider a simple

case

Yt(d(t−m):t) = Yt(0) +
m∑
s=0

αs+1dt−s ⇒ Yt(1)− Yt(0) =
m∑
s=0

αs+1dt−s, (18)

for a sequence of constants αs ∈ R. The naive ATE estimate, defined as a difference between pre- and post-

treatment averages is possibly biased. In fact, it’s mean equal |T − T0|−1
∑m−1

s=0 (m− s)αs+1 +
∑m

s=0 αs,

where |T − T0|−1
∑m−1

s=0 (m− s)αs+1 defines its bias.

9 Discussion

In this paper, we have introduced a novel strategy for estimating treatment effects and testing the null

hypothesis of interest in the presence of time-dependent observations. We developed a novel algorithm,

denoted as Synthetic Learner, that predicts the counterfactual building on multiple regression methods.

Our framework provides a starting point for performing estimation and inference, which is valid regardless

of the class of models under consideration.

The presence of one single treated unit at a given time of adopting the policy brings substantial chal-

lenges from an identification perspective. We considered three scenarios of interest. First, (i) the adoption

date is deterministic, T0 and fixed treatment effects similarly to Chernozhukov et al. (2021), Chernozhukov

et al. (2018), Arkhangelsky et al. (2021) among others. We show that, under stationarity and mixing condi-

tions, our algorithm controls the nominal size regardless of the class of base algorithm under consideration,

even in the presence of misspecification bias. Extending this result to non-deterministic T0 is conceptually

feasible in the presence of multiple units treated at different points in time. (ii) We consider a random

and exogenous time of treatment, and under stationarity assumptions, we show that the estimator for the

average treatment effect is consistent under weak assumptions, letting T0 be non-deterministic. Finally,
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(iii) we let the treatment time be sequentially exogenous, without assuming any stationarity condition.

We provide bounds on the predictive performance under this complex scenario. Our paper also opens

new questions on constructing valid machine learning methods for causal inference when units exhibit

dependence. We leave it to future research its study for inference on conditional average treatment effects

under heterogeneous effects and endogenous treatment time.
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Chernozhukov, V., K. Wüthrich, and Y. Zhu (2021). An exact and robust conformal inference method

for counterfactual and synthetic controls. Journal of the American Statistical Association 116 (536),

1849–1864.

Doudchenko, N. and G. W. Imbens (2016). Balancing, regression, difference-in-differences and synthetic

control methods: A synthesis. Technical report, National Bureau of Economic Research.

Elliott, G. and A. Timmermann (2004). Optimal forecast combinations under general loss functions and

forecast error distributions. Journal of Econometrics 122 (1), 47–79.

Fang, Z. and A. Santos (2018). Inference on directionally differentiable functions. The Review of Economic

Studies 86 (1), 377–412.

Ferman, B. and C. Pinto (2016). Revisiting the synthetic control estimator.

Firpo, S. and V. Possebom (2018). Synthetic control method: Inference, sensitivity analysis and confidence

sets. Journal of Causal Inference 6 (2).

Garthwaite, C., T. Gross, and M. J. Notowidigdo (2014). Public health insurance, labor supply, and

employment lock. The Quarterly Journal of Economics 129 (2), 653–696.

Gunsilius, F. (2020). Distributional synthetic controls. arXiv preprint arXiv:2001.06118 .

Hazlett, C. and Y. Xu (2018). Trajectory balancing: A general reweighting approach to causal inference

with time-series cross-sectional data. https://ssrn.com/abstract=3214231 .

Hsiao, C., H. Steve Ching, and S. Ki Wan (2012). A panel data approach for program evaluation:

measuring the benefits of political and economic integration of hong kong with mainland china. Journal

of Applied Econometrics 27 (5), 705–740.

Hsiao, C. and Q. Zhou (2019). Panel parametric, semiparametric, and nonparametric construction of

counterfactuals. Journal of Applied Econometrics 34 (4), 463–481.

38



Iavor Bojinov, N. S. (2019, Forthcoming). Time series experiments and causal estimands: exact random-

ization tests and trading. Journal of the American Statistical Association.

Imai, K. and I. S. Kim (2021). On the use of two-way fixed effects regression models for causal inference

with panel data. Political Analysis 29 (3), 405–415.

Imai, K., I. S. Kim, and E. Wang (2018). Matching methods for causal inference with time-series cross-

section data. https://imai.fas.harvard.edu/research/files/tscs.pdf .

Imai, K., M. Ratkovic, et al. (2013). Estimating treatment effect heterogeneity in randomized program

evaluation. The Annals of Applied Statistics 7 (1), 443–470.

Imbens, G. W. and D. B. Rubin (2015). Causal inference in statistics, social, and biomedical sciences.

Cambridge University Press.

Kolstad, J. T. and A. E. Kowalski (2012). The impact of health care reform on hospital and preventive

care: evidence from massachusetts. Journal of Public Economics 96 (11-12), 909–929.

Künzel, S. R., J. S. Sekhon, P. J. Bickel, and B. Yu (2019). Metalearners for estimating heterogeneous

treatment effects using machine learning. Proceedings of the National Academy of Sciences 116 (10),

4156–4165.

Lange, T., A. Rahbek, and S. T. Jensen (2011). Estimation and asymptotic inference in the ar-arch model.

Econometric Reviews 30 (2), 129–153.

Lee, O. (2005). Probabilistic properties of a nonlinear arma process with markov switching. Communica-

tions in Statistics-Theory and Methods 34 (1), 193–204.

Li, K. T. (2017). Estimating average treatment effects using a modified synthetic control method: Theory

and applications. The Wharton School, the University of Pennsylvania.

Li, K. T. (2020). Statistical inference for average treatment effects estimated by synthetic control methods.

Journal of the American Statistical Association 115 (532), 2068–2083.

Li, K. T. and D. R. Bell (2017). Estimation of average treatment effects with panel data: Asymptotic

theory and implementation. Journal of econometrics 197 (1), 65–75.

Long, S. K., K. Stockley, and A. Yemane (2009). Another look at the impacts of health reform in

massachusetts: evidence using new data and a stronger model. American Economic Review 99 (2),

508–11.

Lunde, R. and C. R. Shalizi (2017). Bootstrapping generalization error bounds for time series. arXiv

preprint arXiv:1711.02834 .

Maclean, J. C., S. Tello-Trillo, and D. Webber (2019). Losing insurance and behavioral health inpa-

tient care: Evidence from a large-scale medicaid disenrollment. Technical report, National Bureau of

Economic Research.

39



Pham, T. D. and L. T. Tran (1985). Some mixing properties of time series models. Stochastic processes

and their applications 19 (2), 297–303.

Politis, D. N. and J. P. Romano (1992). A circular block-resampling procedure for stationary data.

Exploring the limits of bootstrap 2635270.

Politis, D. N. and J. P. Romano (1994). The stationary bootstrap. Journal of the American Statistical

association 89 (428), 1303–1313.

Polley, E. C. and M. J. Van Der Laan (2010). Super learner in prediction.

Potrafke, N. and K. Wuthrich (2020). Green governments. arXiv preprint arXiv:2012.09906 .

Rambachan, A. and N. Shephard (2019). A nonparametric dynamic causal model for macroeconometrics.

arXiv preprint arXiv:1903.01637 .

Rigollet, P., A. B. Tsybakov, et al. (2012). Sparse estimation by exponential weighting. Statistical

Science 27 (4), 558–575.

Rinaldo, A., L. Wasserman, and M. G’Sell (2019). Bootstrapping and sample splitting for high-

dimensional, assumption-lean inference. The Annals of Statistics 47 (6), 3438–3469.

Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure

period—application to control of the healthy worker survivor effect. Mathematical modelling 7 (9-12),

1393–1512.

Rubin, D. B. (1990). Formal mode of statistical inference for causal effects. Journal of statistical planning

and inference 25 (3), 279–292.

Schapire, R. E. and Y. Freund (2012). Boosting: Foundations and algorithms. MIT press.

Shaikh, A. and P. Toulis (2019). Randomization tests in observational studies with staggered adoption of

treatment. University of Chicago, Becker Friedman Institute for Economics Working Paper (2019-144).

Tello-Trillo, D. S. (2021). Effects of losing public health insurance on preventative care, health, and emer-

gency department use: Evidence from the tenncare disenrollment. Southern Economic Journal 88 (1),

322–366.

Timmermann, A. (2006). Forecast combinations. Handbook of economic forecasting 1, 135–196.

Varian, H. R. (2016). Causal inference in economics and marketing. Proceedings of the National Academy

of Sciences 113 (27), 7310–7315.

Xie, S. and J. Huang (2014). The impact of index futures on spot market volatility in china. Emerging

Markets Finance and Trade 50 (sup1), 167–177.

Xu, Y. (2017). Generalized synthetic control method: Causal inference with interactive fixed effects

models. Political Analysis 25 (1), 57–76.

40


	Introduction
	Related Work

	Setup and Identification
	Estimands and Null Hypothesis
	Identification Conditions
	Testable Implications and Identification of Average Effects

	Counterfactuals Predictions and Hypothesis Testing
	Testing the Sharp Null Hypothesis

	Average Treatment Effects, Bias Adjustment and Time-Varying Fixed Effects
	Extension to Time-Varying Fixed Effects

	Ensamble Weights and Prediction Guarantees under Non-stationarity
	Ensamble: Exponential weights
	Prediction Guarantees

	Numerical Experiments
	Experimental Setups
	Testing
	Power Study: Comparison with SC and DID
	Size Control
	Oracle Study: Learners' performance
	Endogenous time of intervention
	Variability in the quality of the learners
	Bootstrap vs permutations


	The Effect of Public Health Insurance Ineligibility on Access to Medical Care
	Data
	Estimation
	Results
	Discussion: Assumptions and Possible Sources of Confounding

	Extension: Carry-over Effects
	Discussion
	Acknowledgments

