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This online Appendix contains additional extensions and results not included in the main

Appendix.
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Appendix E Additional Extensions

E.1 Staggered adoption

In this section, we sketch the experimental design in the presence of staggered adoption,

i.e., when treatments are assigned only once to individuals and post-treatment outcomes are

collected once. The algorithm works similarly to what was discussed in Section 4 with one

small difference: every period, we only collect information from a given clusters’ pair and

update the policy for the subsequent pair and proceed in an iterative fashion.
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Theorem E.1 (In-sample regret). Let the conditions in Theorem 4.3 hold and let β ∈ R, with

β̌t estimated as in Algorithm E.1. Then P
(

1
T

∑T
t=1

[
W (β∗)−W (β̌t)

]
≤ C̄ p log(T )

T

)
≥ 1−1/n

for a finite constant C̄ <∞.

See Appendix F.2 for the proof. The disadvantage of the staggered adoption case is that

we cannot control the in-sample regret worst-case over all clusters as in Section 4, but only

the average regret across clusters.

Algorithm E.1 Adaptive Experiment with staggered adoption

Require: Starting value β ∈ R, K clusters, T + 1 periods of experimentation.
1: Create pairs of clusters {k, k + 1}, k ∈ {1, 3, · · · , K − 1};
2: t = 0:

a: For n units in each cluster observe the baseline outcome Y
(h)
i,0 , h ∈ {1, · · · , K}, β̌0 = β.

b: Initalize a gradient estimate M̂t = 0
3: while 1 ≤ t ≤ T do

a: Sample without replaceent one pair of clusters {k, k + 1} not observed in previous
iterations;
b: Define β̌t = β̌t−1 + αtM̂t;
c: Assign treatments as

D
(h)
i,t ∼ π(1, βt), βt =

{
β̌t + ηn if h is even

β̌t − ηn if h is odd
, n−1/2 < ηn ≤ n−1/4

d: For n units in each cluster h ∈ {1, · · · , K} observe Y
(h)
i,t .

4: end while
5: Return β̂∗ = β̌T

E.2 Extensions for the network formation model

Consider the following equation:

(X
(k)
i , U

(k)
i ) ∼i.i.d. FU |XFX , A

(k)
i,j = l

(
X

(k)
i , X

(k)
j , U

(k)
i , U

(k)
j , ω

(k)
i,j

)
1{ik ↔ jk} (E.1)

where ω
(k)
i,j

∣∣∣{ω(k)
u,v

}
(u,v)6=(i,j),(u,v)6=(j,i)

, X(k), U (k), ν(k) ∼i.i.d. Fω.
Intuitively, Equation (E.1) states that the connections form also based on unobservables

ωi,j which are drawn independently for each pair (i, j) (note we can have ωi,j = ωj,i). We

can now state the following lemma.

Lemma E.2 (Outcomes). Under Assumption 2.1, with a network formation as in Equation

(E.1), Assumption 2.2, under an assignment in Assumption 2.3 with exogenous (i.e., not

data-dependent) βk,t, Lemma B.4 (and so Lemma 2.1) hold.
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The proof is in Appendix F.3. Lemma E.2 implies that our results (and derivations) for

inference and estimation directly extend with network formation as in Equation (E.1). One

exception is the theorem in Section 5 which instead holds under some minor modification to

the proof, which we omit for brevity.1

Finally, it is also possible to extend Lemma 2.1 to settings where the network also depends

on others’ unobservables. Specifically, consider the following extension:

(X
(k)
i , U

(k)
i ) ∼i.i.d. FU |XFX , A

(k)
i,j = l

(
X

(k)
i , X

(k)
j , U

(k)
i , U

(k)
j , Uv:1{ik∼vk}=1, Uv′:1{jk∼v′k}=1

)
1{ik ↔ jk}.

(E.2)

Equation (E.2) states that the connection between individual i and j can depend not

only on unobservables of i and j, but also unobservables of all the possible connections of

both individual i and individual j. Following a similar argument of Lemma B.4, we can show

Y
(k)
i,t = y

(
X

(k)
i , βk,t

)
+ ε

(k)
i,t + αt + τk, Eβk,t

[
ε

(k)
i,t |X

(k)
i

]
= 0, (E.3)

for some function y(·) unknown to the researcher. Therefore, our results for estimation and

inference hold also in this setting.

E.3 Selection of ηn: rule of thumb

In this subsection we provide a rule of thumb for selecting ηn. Following Theorem 3.1 and

following Lemma B.3 which provides exact constants, with probability at least 1− 1/n

∣∣∣M̂(k,k+1) −M(β)
∣∣∣ ≤√2σ2γN log(2γNn)

nη2
n

+ cηn, c =
∣∣∣∣∣∣∂2m(d, x, β)

∂β2

∣∣∣∣∣∣
∞
,

where the l∞ is taken with respect to each element of the Hessian, x, β.2 we cannot directly

minimize the upper bound since otherwise we would violate the condition that ηn = o(n−1/4).

Instead, we minimize minηn

√
2σ2γN log(2γNn)

nη2n
+ cηn/s

2
n, sn = o(1), where sn penalizes the bias

by an o(1) component and chosen below. It follows that for given penalization sn the

minimizer of the expression is η2
n =

√
2snσ2γN log(2γNn)

nc
. Let sn = γN/(n

1/4 log(nγN)), assumed

to be o(1) for inference by assumption. we can then write the solution to the optimization

problem as γN

√
2σ2

c
n−5/16 ≈ γN

√
2σ2

c
n−1/3. Here, we can replace σ2 and c with some out-

of-sample estimates of the outcomes’ variance and curvature. Whenever the researcher does

1In particular, the difference is in one step of the proof where we need to show concentration of
1
γN

∑N
i=1Ai,j around its expectation, here also taking into account also the component ωi,j . Under the

assumption that ωi,j are independent for all j ∈ {1, · · · , N} the argument in the proof, i.e., concentration
of the edges conditional on (Xi, Ui) directly follows also for this step, since conditional on Xi, Ui, we still
obtain independence of Ai,j , j ∈ {1, · · · , N}, and we can then follow the same argument in the derivation.

2The constants for the upper bound for the variance follow from Lemma B.3, while the component cηn
captures the bias obtained from a second-order Taylor expansion to m(·).
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not have a good guess for γN , we recommend choosing ηn =
√

2σ2

c
n−1/3 (without the term

γN) which also leads to valid inference, but slightly smaller small-sample bias (and larger

small-sample variance) than the optimal choice. Finally, since researcher may impose small

sample upper bound on the bias, the suggested rule of thumb is

ηn =


√

2σ2

c n
−1/3 if

√
2σ2

c n
−1/3 ≤ H

H otherwise

where Hc denotes an upper bound on the bias of the estimator imposed by the researcher.

Appendix F Additional proofs for the extensions

F.1 Proof of Theorem A.8

In this subsection, we derive the theorem for the gradient descent method under Assumption

A.5. The derivation is split into the following lemmas.

Definition F.1 (Oracle gradient descent). We define for positive constants ∞ > µ, κ > 0,

κ as defined in Lemma F.1, arbitrary v ∈ (0, 1), αw = J
Ť 1/2−v/2||M(β∗w−1)|| , J < 1

β∗w =

 PB1,B2

[
β∗w−1 + αw−1M(β∗w−1)

]
if ||M(β∗w)||2 ≥ κ

µŤ 1/2−v/2

β∗w−1 otherwise
β∗1 = β0, (F.1)

Lemma F.1 (Adaptive gradient descent for quasi-concave functions and locally strong con-

cave). Let B be compact. Define G = max{supβ∈B 2||β||2, 1}. Let Assumption 3.1, 4.1,

A.5 hold. Let κ be a positive finite constant, defined as in Equation (F.2). Then for any

v ∈ (0, 1), for Ť ≥ ((G+ 1)/J)1/v, the following holds: ||β∗
Ť
− β∗||2 ≤ κŤ−1+v.

Proof of Lemma F.1. To prove the statement, we use properties of gradient descent meth-

ods with gradient norm rescaling (Hazan et al., 2015), with modifications to the original

arguments to explicitely obtain a rate T−1+v for an arbitrary small v.

Preliminaries Clearly, if the algorithm terminates at w, under Assumption A.5 (B), this

implies that ||β∗w−β∗||22 ≤ κŤ−1+v, proving the claim. Therefore, assume that the algorithm

did not terminate at time w. This implies that for any w̌ ≥ 1, ||β∗w̌−β∗||22 > κŤ−1+v. Define

ε = Ť−1+v and let ∇w be the gradient evaluated at β∗w. For every β ∈ B, define H(β)
∣∣∣
[β∗,β]

the Hessian evaluated at some point β̃ ∈ [β∗, β], such that

W (β) = W (β∗) +
1

2
(β − β∗)>H(β)

∣∣∣
[β∗,β]

(β − β∗),
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which always exists by the mean-value theorem and differentiability of the objective function.

Define
1

2
(β − β∗)>H(β)

∣∣∣
[β∗,β]

(β − β∗) = f(β) ≤ 0,

where the inequality follows by definition of β∗ (note that f(β) also depends on β̃, whose

dependence we implicitely suppressed). Finally, note that −|λmax|||β − β∗||2 ≤ f(β) ≤
−|λmin|||β − β∗||2 for constants λmax > λmin > 0. The lower bound follows directly by

Assumption 3.1, while the upper bound follows directly from Assumption A.5 (C).

Cases Define

κ =
|λmax|
|λmin|

≥ 1. (F.2)

Observe now that if ||β∗w − β∗||2 ≤ εκ, the claim trivially holds. Therefore, consider the case

where ||β∗w − β∗||2 > εκ.

Comparisons within the neighborhood Take β̃ = β∗ −
√
ε ∇w

||∇w||2 . Observe that

W (β̃)−W (β∗w) =
1

2
(β̃ − β∗)>H(β̃)

∣∣∣
[β∗,β̃]

(β̃ − β∗)− 1

2
(β∗w − β∗)>H(β∗w)

∣∣∣
[β∗,β∗w]

(β∗w − β∗)

≥ −|λmax|ε+ |λmin|εκ = 0.

As a result, for all β∗w : ||β∗w − β∗||2 > εκ, using quasi-concavity

∇>w(β̃ − β∗w) ≥ 0⇒ ∇>w(β∗ − β∗w) ≥
√
ε||∇w||2 (F.3)

Plugging in the above expression in the definition of β∗w By construction of the

algorithm, we write

||β∗ − β∗w+1||2 ≤ ||β∗ − β∗w||2 − 2αwJ∇>w(β∗ − β∗w) + J2α2
w||∇w||2.

By Equation (F.3), we can write ||β∗−β∗w+1||2 ≤ ||β∗−β∗w||2−2Jαw
√
ε||∇w||2 +J2α2

w||∇w||2.
Plugging in the expression for αw, and using the fact that J ≤ 1, we have ||β∗ − β∗w+1||2 ≤
||β∗ − β∗w||2 − Jε.

Recursive argument Recall that since the algorithm did not terminate, ||β∗−β∗w̌||2 > εκ,

for all w̌ ≤ w. Using this argument recursively, we obtain

||β∗ − β∗
Ť
||2 ≤ ||β∗ − β0||2 − J

Ť∑
s=1

ε = 2 max
β∈B
||β||2 − JŤ v ≤ G+ 1− JŤ v.

Whenever Ť > (G/J + 1/J)1/v, we have a contradiction. The proof completes.
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Lemma F.2. Let Assumption 2.1, 2.2, 4.1, A.5 hold. Assume that

εn ≥
√
p
[
C̄

√
γN

log(γN ŤK/δ)

η2
nn

+ ηn

]
,

1

4µŤ 1/2−v/2 − εn ≥ 0

for a finite constant C̄ < 0.

Then, with probability at least 1− δ, for any δ ∈ (0, 1) for any w ≤ Ť ,

either (i)
∣∣∣∣∣∣β̌wk − β∗w∣∣∣∣∣∣∞ = O(Pw(δ) + pηn), or (ii)

∣∣∣∣∣∣β̌wk − β∗∣∣∣∣∣∣2
2
≤ p

Ť 1−v

where P1(δ) = err(δ) and Pw(δ) =
2
√
p

νn
Bp 1

Ť 1/2−v/2Pw−1(δ) +Pw−1(δ) +
2
√
p

νn
1

Ť 1/2−v/2 err(δ), for a

finite constant B <∞, and err(δ) ≤ c0

(√
γN

log(γNpŤK/δ)
η2nn

+ pηn

)
, with νn = 1

µŤ 1/2−v/2 − 2εn,

and a finite constant c0 <∞.

Proof of Lemma F.2. First, by Lemma 4.1, the estimated coefficients are exogenous. Hence,

by invoking Lemma B.7 and the union bound, we can write for every k and t, δ ∈ (0, 1),

|M̌ (j)
k,w −M (j)(β̌wk+2)| ≤ c0

(√
γN

log(γNKŤ/δ)
η2nn

+ ηn

)
. We now proceed by induction. We first

prove the statement, assuming that the constraint is always attained. We then discuss the

case of the constrained solution. Define B = supβ

∣∣∣∣∣∣∂2W (β)
∂β2

∣∣∣∣∣∣
∞
.

Unconstrained case Consider w = 1. Then since all clusters start from the same starting

point β0 recall that (β∗1 = β0), we can write with probability 1− δ, by the union bound over

p (which hence enters in the log(p) component of errn) and Lemma B.7
∣∣∣∣∣∣M̌k,1−M(β∗1)

∣∣∣∣∣∣
∞
≤

err(δ). Consider now the case where the algorithm stops. This implies that it must be that

||M̌k,1||2 ≤ 1
µŤ 1/2−v/2 − εn. By Lemma B.7

||M(β∗1)||2 ≤ ||M̌k,1||2 +
√
perr(δ) ≤ 1

µŤ 1/2−v/2 − εn +
√
perr(δ) ≤ 1

µŤ 1/2−v/2 . (F.4)

since εn ≥
√
perr(δ). As a result, also the oracle algorithm stops at β∗1 by construction of εn.

Suppose the algorithm does not stop. Then it must be that ||M̌k,1|| ≥ 1
µŤ 1/2−v/2 − εn and

||V1(β∗1)|| ≥ 1

µŤ 1/2−v/2 − εn −
√
perr1 ≥

1

µŤ 1/2−v/2 − 2εn := νn > 0.

Observe now that∣∣∣∣∣∣ M̌k,1

||M̌k,1||2
− M(β∗1)

||M(β∗1)||2

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣M̌k,1 −M(β∗1)

||M(β∗1)||2

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣M̌k,1(||M̌k,1||2 − ||M(β∗1)||2)

||M(β∗1)||2||M̌k,1||2

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣M̌k,1 −M(β∗1)

||M(β∗1)||2

∣∣∣∣∣∣
∞

+
√
p
∣∣∣∣∣∣M̌k,1 −M(β∗1)

||M(β∗1)||2

∣∣∣∣∣∣
∞
.

(F.5)

The last inequality follows from the reverse triangular inequalities and standard properties

of the norms. Then with probability at least 1− δ, for any δ ∈ (0, 1) (F.5) ≤ 1
νn
×2
√
perr(δ).
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completing the claim for w = 1. Consider now a general w. Define the error until time w−1

as Pw−1.Then for every j ∈ {1, · · · , p}, by Assumption 3.1, we have with probability at least

1− wδ (using the union bound), and letting 1p = [1, · · · , 1] ∈ Rp,

M̌
(j)
k,w = M (j)(β̌wk+2) + err(δ) = M (j)(β∗w + 1pPw(δ)) + err(δ)

⇒
∣∣∣∣∣∣M̌k,w −M(β∗w)

∣∣∣∣∣∣
∞
≤ BpPw(δ) + err(δ),

where the above inequality follows by the mean-value theorem and Assumption 3.1. Suppose

now that ||M̌k,w||2 ≤ 1
µŤ 1/2−v/2 − εn. Then for the same argument as in Equation (F.4), we

have ||M(β̌wk )||2 ≤ 1
µŤ 1/2−v/2 . Under Assumption A.5 (B) this implies that ||β̌wk −β∗||22 ≤ 1

Ť 1−v ,

which proves the statement. Suppose instead that the algorithm does not stop. Then we

can write by the induction argument∣∣∣∣∣∣β̌wk +
1

Ť 1/2−v/2
M̌k,w

||M̌k,w||2
− β∗w −

1

Ť 1/2−v/2
M(β∗w)

||M(β∗w)||2

∣∣∣∣∣∣
∞
≤ Pw(δ) +

1

Ť 1/2−v/2

∣∣∣∣∣∣ M̌k,w

||M̌k,w||2
− M(β∗w)

||M(β∗w)||2

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(B)

.

(F.6)

Using the same argument in Equation (F.5), we have with probability at least 1 − δ,

(B) ≤ 2
√
p

νn

[
err(δ) +BpPw(δ)

]
, which completes the proof for the unconstrained case. The Ť

component in the error expression follows from the union bound across all Ť events.

Constrained case Since the statement is true for w = 1, we can assume that it is true

for all s ≤ w− 1 and prove the statement by induction. Since B is a compact space, we can

write ∣∣∣∣∣∣PB1,B2−ηn[ w∑
s=1

αk,sM̌k,s

]
− PB1,B2

[ w∑
s=1

αsM(β∗s )
]∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣PB1,B2−ηn[ w∑

s=1

αk,sM̌k,s

]
− PB1,B2−ηn

[ w∑
s=1

αsM(β∗s )
]∣∣∣∣∣∣
∞

+ pO(ηn)

≤ 2
∣∣∣∣∣∣ w∑
s=1

αk,sM̌k,s −
w∑
s=1

αsM(β∗s )
∣∣∣∣∣∣
∞

+ pO(ηn).

For the first component in the last inequality, we follow the same argument as above.

Lemma F.3. Let the conditions in Lemma F.2 hold. Then with probability at least 1 − δ,
for any k ∈ {1, · · · , K}, for any v ∈ (0, 1), δ ∈ (0, 1), Ť ≥ ζ1/v,

||β∗ − β̌Ťk ||22 ≤
κ

Ť 1−v + Ť eBp
√
pŤ × c0

(
γN

log(pγN ŤK/δ)

η2
nn

+ p2η2
n

)
,

with 0 < ζ, κ,B < ∞ being constants independent on (n, Ť ) and εn as defined in Lemma

F.2, and a finite constant c) <∞.

7



Proof. We invoke Lemma F.2. Observe that we only have to check that the result holds for

(i) in Lemma F.2, since otherwise the claim trivially holds. Using the triangular inequality,

we can write ||β∗− β̌Ťk ||22 ≤ ||β∗−β∗Ť ||
2
2 + ||β̌Ťk −β∗Ť ||

2
2. The first component on the right-hand

side is bounded by Lemma F.1, with Ť ≥ ζ1/v, ζ being a constant defined in Lemma F.1.

Using Lemma F.2, we bound with probability at least 1 − δ, the second component as

follows ||β̌Ťk − β∗Ť ||
2
2 ≤ p||β̌Ťk − β∗Ť ||

2
∞ = p × O(P 2

Ť
(δ)). We conclude the proof by explicitly

defining recursively, for all 1 < w ≤ Ť ,

Pw = (1 +
2Bp
√
p

νnŤ 1/2−v/2 )Pw−1 +
1

Ť 1/2−v/2 ẽrrn(δ), P1 = ẽrrn(δ).

where ẽrrn(δ) =
2
√
p

νn
c0(
√
γN

log(pTK/δ)
η2nn

+ pηn), and B < ∞ denotes a finite constant. Using

a recursive argument, we obtain Pw = ẽrrn(δ)
∑w

s=1 αs
∏w

j=s(
2Bp
√
p

νnŤ 1/2−v/2 + 1). Recall now that

νn ≥ 1
2µŤ 1/2−v/2 , for εn as in Lemma F.2. As a result we can bound the above expression as

w∑
s=1

αs

w∏
j=s

(
2Bp
√
p

νnŤ 1/2−v/2 + 1) ≤
w∑
s=1

αs

w∏
j=s

(
4µŤ 1/2−v/2Bp

√
p

Ť 1/2−v/2 + 1) ≤
w∑
s=1

αs exp
( w∑
j=s

4µBp
√
p
)
.

Now we have exp
(∑w

j=s 4µBp
√
p
)
≤ exp

(
4µŤBp

√
p
)
, since w ≤ Ť . We now write

Pw(δ) ≤ ẽrrn(δ)
w∑
s=1

αs exp
(

4µŤBp
√
p
)
≤ ẽrrn(δ)Ť 1/2+v exp

(
8µ2ŤBp

√
p
)
.

Corollary 1. Theorem A.8 holds.

Proof. Consider Lemma F.2 where we choose δ = 1/n. Observe that we choose εn ≤
1

4µŤ 1/2−v/2 , which is attained by the conditions in Lemma F.2 as long as n is small enough

such that
√
p
[
C̄

√
log(n)γN

log(pγN ŤK)

η2
nn

+ ηn

]
≤ 1

4µŤ 1/2−v/2

attained under the assumptions stated in Lemma F.2. As a result, we have νn = 1
4µŤ 1/2−v/2 .

By Lemma F.3 for all k, with probability at least 1− 1/n, ||β̌Ťk −β∗||2 .
p

Ť 1−v . Also, we have

||β∗− 1
K

∑
k β̌

Ť
k ||22 ≤ 1

K

∑
k ||β̌Ťk −β∗||2. The proof concludes by Theorem F.3 and Assumption

3.1, after observing that W (β∗)−W (β̂∗) . ||β∗ − β̂∗||22.

F.2 Proof of Theorem E.1

The proof mimics the proof of Theorem 4.3.
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Consider Lemma B.10 where we choose δ = 1/n. Note that we can directly apply Lemma

B.10 also to the gradient estimated with Algorithm E.1, since, by the circular-cross fitting

argument, each parameter β̌wk is estimated using sequentially pairs of different clusters as in

Algorithm E.1. The rest of the proof follows verbatim from the one of Theorem 4.3.

F.3 Proof of Lemma E.2

The proof follows similarly to the proof of Lemma B.4, here taking into account also the

component ωi,j. Under Assumption 2.2, we can write for some function g,

r
(
D

(k)
i,t , D

(k)

j:A
(k)
i,j >0,t

, X
(k)
i , X

(k)

j:A
(k)
i,j >0

, A
(k)
i , U

(k)
i , U

(k)

j:A
(k)
i,j >0

, ν
(k)
i,t

)
= g(Z

(k)
i,t ).

Here, Z
(k)
i,t depends on A

(k)
i , i.e., the edges of individual i, and on unobservables and observ-

ables of all those individuals such that A
(k)
i,j > 0, namely,

Z
(k)
i,t =

[
D

(k)
i,t , X

(k)
i , U

(k)
i , ν

(k)
i,t , A

(k)
i ⊗

(
X(k), U (k), D

(k)
t

)
,
{[
X

(k)
j , U

(k)
j , ω

(k)
i,j

]
, j : 1{ik ↔ jk} = 1

}]
.

Importantly, under Equation (E.1), A
(k)
i is a function of

{[
X

(k)
j , U

(k)
j , ω

(k)
i,j

]
, j : 1{ik ↔ jk} =

1
}
, only, and each entry depends on (Xj, Uj, Xi, Ui, ωi,j) through the same function l for

each individual. What is important, is that
∑

j 1{ik ↔ jk} = γ
1/2
N for each unit i. Therefore,

for some function g̃ (which depends on l in Assumption 2.1), we can equivalently write

Z
(k)
i,t = g̃(D

(k)
i,t , ν

(k)
i,t , X

(k)
i , U

(k)
i , Z̃

(k)
i,t ), Z̃

(k)
i,t =

{[
X

(k)
j , U

(k)
j , D

(k)
j,t , ω

(k)
i,j

]
, j : 1{ik ↔ jk} = 1

}
,

where Z̃
(k)
i,t is the vector of

[
X

(k)
j , U

(k)
j , D

(k)
j,t , ωi,j

]
of all individuals j with 1{ik ↔ jk} = 1.

Now, observe that since (U
(k)
i , X

(k)
i ) ∼i.i.d. FX|UFU , ωi,j ∼ Fω, {νi,t} are i.i.d. conditionally

on U (k), X(k), ω(k) and treatments are randomized as in Assumption 2.3, we have

G
(k)
i,j =

[
X

(k)
j , U

(k)
j , ν

(k)
j,t , D

(k)
j,t , ω

(k)
i,j

]∣∣∣βk,t ∼ D(βk,t)

are distributed with some distribution D(βk,t) which only depends on the exogenous coeffi-

cient βk,t governing the distribution of D
(k)
i,t under Definition 2.3. Also, G

(k)
i,j are independent

across j (but not i) by the independence assumption of ωi,j. As a result for βk,t being ex-

ogenous, Lemma 2.1 holds since
∑

j 1{ik ↔ jk} = γ
1/2
N for all i, hence Z̃i,t are identically

(but not independently) distributed across units i, since Z̃i,t is a vector of γN i.i.d random

variables, each having the same marginal distribution which does not depend on i (therefore

Z̃i,t has the same joint distribution across i).

To show the local dependence result, note that G
(k)
i,j is mutually independent of G

(k)
u,v for

all {(v, u) : (v, u) 6∈ {(i, j), (j, i)}, u 6= j} because ωi,j are independent for different entries
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(i, j). In addition, ε
(k)
i,t |βk,t is a measurable function of a vector3

[
X

(k)
j , U

(k)
j , ν

(k)
j,t , D

(k)
j,t , ω

(k)
i,j

]
j:1{ik↔jk}=1

.

As a result, under mutual independence ofGi,j withGu,v for all {(v, u) : (v, u) 6∈ {(i, j), (j, i)}, u 6=
j}, conditional on βk,t, ε

(k)
i,t is mutally independent with ε

(k)
v,t for all v such that they are not

connected and do not share a common element
[
X

(k)
j , U

(k)
j , ν

(k)
j,t , D

(k)
j,t , ω

(k)
v,j

]
, that is, such that

maxj 1{ik ↔ jk}1{vk ↔ jk} = 0 (here 1{vk ↔ vk} = 1 for notational convenience). This

holds since the edge between i and v is zero almost surely if 1{vk ↔ ik} = 0.

There are at most γ
1/2
N + γN many of ε

(k)
v,t which can share a common neighbor with ε

(k)
i,t

(γ
1/2
N many neighhbors and γN many neighbors of the neighbors), which concludes the proof.

Appendix G Numerical studies: additional results

G.1 One-wave experiment

In Figure G.2 we report the power plot for ρ = 6. In Figure G.3 we report the welfare

gain from increasing β by 5% upon rejection of H0 for ρ = 6. In Figure G.6, we report

comparisons for different values of ηn.

G.2 Multiple-wave experiment

In Table G.1, we provide comparison with competitors for ρ = 6. Results are robust as in

the main text.

In Figure G.4 we report a comparison among different learning rates, which are the one

which rescales by 1/t, the one that rescales by 1/
√
T and the one that rescales by 1/

√
t.

In Figure G.9 we study the adaptive experiment as the starting value is the optimum

minus 5% and show that the out-of-sample regret is small and close to zero.

G.3 Calibrated experiment with covariates for cash transfers

In this subsection, we turn to a calibrated experiment where we also control for covariates,

as discussed in Section 2.3. we use data from Alatas et al. (2012, 2016). we estimate a

function heterogenous in the distance of the household’s village from the district’s center.

we use information from approximately four hundred observations, whose eighty percent or

3Here for notational convenience convenience only, we are letting 1{ik ↔ ik} = 1.
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more neighbors are observed. We let Xi ∈ {0, 1}, Xi = 1 if the household is far from the

district’s center than the median household, and estimate

Yi|Xi = x = φ0 + X̃iτ +Diφ1,x+

∑
j 6=iAj,iDj

max{
∑

j 6=iAj,i, 1}
φ2,x+

( ∑
j 6=iAj,iDj

max{
∑

j 6=iAj,i, 1}

)2

φ3,x+ηi,

(G.1)

where ηi are unobservables centered on zero conditional on Xi = x, and X̃i denotes controls

which also include Xi.
4 Using the estimated parameter, we can then calibrate the simulations

as follows.

We let ηi,t,∼ N (0, σ2), where σ2 is the residual variance from the regression. We then

generate the network and the covariate as follows:

Ai,j = 1
{
||Ui − Uj||1 ≤ 2ρ/

√
N
}
, Ui ∼i.i.d. N (0, I2), Xi = 1{U (1)

i > 0}.

Here, U
(1)
i is continuous and captures a measure of distances. Individuals are more likely

to be friends if they have similar distances from the center, and Xi is equal to one if an

individual is far from the district’s center from the median household. We fix ρ = 1.5 to

guarantee that the objective’s function optimum is approximately equal to the optimum

observed from the data (in calibration, the optimum is β ≈ 0.26, while β∗ ≈ 0.29 on the

data). We then generate data

Yi,t|Xi = x = Diφ̂1,x +

∑
j 6=iAj,iDj

max{
∑

j 6=iAj,i, 1}
φ̂2,x +

( ∑
j 6=iAj,iDj

max{
∑

j 6=iAj,i, 1}

)2

φ̂3,x + ηi,t. (G.2)

where we removed covariates that did not interact with the treatment rule (i.e., do not

affect welfare computations). The policy function is π(x; β) = xβ + (1 − x)(1 − β) where

β is the probability of treatment for individuals farer from the center. Here, we implicitely

imposed a budget constraint βP (Xi = 1) + (1− β)P (Xi = 0) = 1/2, where, by construction

P (Xi = 1) = 1/2.

We collect results for the one-wave experiment in Figure G.5, G.7 (left-panel), where we

report power and the relative improvement from improving by 5% the treatment probability

for people in remote areas as discussed in the main text. Welfare improvements (and power)

are increasing in the cluster size and the number of clusters. However, such improvements

are negligible as we increase clusters from twenty to forty, suggesting that twenty clusters

4We also control for the education level, village-level treatments, i.e., how individuals have been targeted
in a village (i.e., via a proxy variable for income, a community-based method, or a hybrid), the size of
the village, the consumption level, the ranking of the individual poverty level, the gender, marital status,
household size, the quality of the roof and top (which are indicators of poverty).
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are sufficient to achieve the largest welfare effects.5 In the right-hand side panel of Figure

G.7 we report the out-of-sample regret. The regret is generally decreasing in the number

of iterations, especially as the regret is further away from zero. As the regret gets almost

zero (0.06%), the regret oscillates around zero as the number of iterations increases due to

sampling variation. This behavior is suggestive that for some applications, few iterations (in

this case, ten) are sufficient to reach the optimum, up to a small error. In Table G.2, we

observe perfect coverage for n = 600, and under-coverage by no more than five percentage

points in the remaining cases.

G.4 Calibrated simulations to M-Turk experiment

In this subsection, we study the performance of the methods to increase vaccination against

COVID-19 through information diffusion.

Specifically, at the beginning of March 2021 (before the vaccination campaign was ex-

tensively implemented), we ran an M-Turk experiment where each individual was assigned

either of two arms.6 A control arm, which consisted of a survey asking basic questions

on characteristics of the participants, and a treatment arm. The treatment arm was first

assigned simple survey questions. Then, individuals under treatment were assigned three

questions about COVID, whose correct answer was rewarded a small economic incentive.

The goal of these questions is to increase awareness of the severity of COVID.7 Each correct

answer rewarded a small bonus and was displayed right after the participant submitted her

answer to the three questions (before the end of the survey). In addition, at the end of

the survey, participants were asked again one of the three questions, whose correct answer

rewards a bonus. Participants were made aware of the bonuses and the survey’s structure.

The scope of the treatment was to increase awareness of the severity of the disease by asking

questions and showing the correct answers to facilitate information transmission. At the end

of the survey, both controls and treated units were asked when they would have done the

vaccine. The outcome of interest is binary and equals whether individuals would have done

the vaccine either as soon as possible or during the spring. We estimate the model with 1035

5The order of magnitude of the welfare gain is smaller compared to simulations with the unconditional
probability since, here, we always treat exactly half of the population. As a result, welfare oscillates between
0.24 and 0.29 only (as opposed to zero to one as in the unconditional case), as shown in Figure 2.

6The experiment was certified an IRB exempt by UCSD, Human Research Protections Program.
7These were multiple answers questions. The first question asked (i) Which of these events caused more

deaths of Covid in the US? (more answers allowed), giving four options (World War I and II, 50 times more
than 9/11, US Civil war); What is the percentage of people in the US who had Covid within the last year?
(approximately); The number of people infected from Covid in the last year is comparable to ... (giving
three options).
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Figure G.1: Multi-wave experiment in Section 7. 200 replications. In-sample regret, average
across clusters, for ρ = 2.

participants.8 We estimate treatment effects by running a simple linear regression, where

the treatment dummy interacts with the dummy, indicating whether the individual classifies

herself as liberal, conservative, or “prefer not to say”. We find substantial heterogeneity,

with positive effects on early vaccination on liberals only. We consider a model and policy

function as in Section G.3, where X, in this case, denotes whether an individual is liberal

or conservative (drawn with the same DGP as in Section G.3 for simplicity), and ρ = 2

as in the main text. We calibrate φ̂1,x to the estimated direct treatment effect and fix the

percentage of treatment units to fifty percent. A challenge here is that we do not know

spillovers φ2x, φ3x. Therefore, we choose φ3,x = rφ2,x, where r is estimated from data on

information diffusion from Cai et al. (2015) for simplicity. We choose φ2,x = max{αφ1,x, 0},
i.e., total spillovers equal direct effect φ1,x times a constant α ∈ {0.1, 0.2, 0.3, 0.4} if these

are positive, and zero otherwise.

We run our one wave experiment with these calibrations and collect results in Figure G.8.

In the figure, we report the relative welfare improvement of increasing treatment probabilities

for liberals of ten percent, upon rejection of the null hypothesis H0 in Equation (19).

8 We collected information from 2411 participants. We removed 158 observations that had already
received the vaccine in March 2020 and 203 observations that took less than thirty seconds and more than
five minutes to take the survey. We also removed all those observations which were not living in the US.
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Figure G.2: One-wave experiment in Section 7. Power plot for ρ = 6. The panels at the top
fix n = 400 and varies K. The panels at the bottom fix K = 20 and vary n.
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Figure G.3: One-wave experiment in Section 7. ρ = 6. Expected percentage increase in
welfare from increasing the probability of treatment β by 5% upon rejection of H0. Here,
the x-axis reports β ∈ [0.1, · · · , β∗ − 0.05]. The panels at the top fix n = 400 and varies the
number of clusters. The panels at the bottom fix K = 20 and vary n.
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Figure G.4: Comparisons among different learning rates with experiment as in Section 7.
200 replications, ρ = 2, n = 600, K = 2T . Fast rate denotes a rescaling of order 1/t; non-
adaptive depends on a rescaling of order 1/

√
T ; the last one (Sqrt-t) depends on a rescaling

of order 1/
√
t.
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Figure G.5: Single-wave experiment in Section G.3. Power, 200 replications.
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Figure G.6: One wave experiment calibrated to Alatas et al. (2012) and Cai et al. (2015).
The plot reports power for different values of ηn varies, with K = 200, n = 400, with 200
replications.
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Figure G.7: Experiment in Section G.3. Left-hand side panel reports the expected percentage
increase in welfare from increasing the probability of treatment β by 5% to individuals in
remote areas upon rejection of H0. Here, the x-axis reports β ∈ [0.1, · · · , β∗ − 0.05]. The
right-hand side panel reports the in-sample regret. 400 replications.
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Figure G.8: One wave experiment in Section G.4. Relative welfare improvement for increas-
ing the probability of treatment by ten percent, conditional on rejecting the null hypothesis.
200 replications. Different columns correspond to different levels of spillover effects (captured
by α). Here K = 20.
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Figure G.9: Multi-wave experiment wave experiment in Section 7, as β is initialized at
the optimum value minus 5%. Reported in the figure is the out-of-sample welfare. 200
replications.
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Table G.1: Multiple-wave experiment in Section 7. Relative improvement in welfare with
respect to best competitor for ρ = 6. The panel at the top reports the out-of-sample regret
and the one at the bottom the worst case in-sample regret across clusters.

Information Cash Transfer

T = 5 10 15 20 5 10 15 20

n = 200 0.03 0.105 0.243 0.156 0.233 0.243 0.264 0.287

n = 400 0.135 0.130 0.244 0.258 0.243 0.274 0.321 0.335

n = 600 0.217 0.214 0.281 0.344 0.261 0.313 0.343 0.360

n = 200 0.587 0.695 0.670 0.627 0.247 0.279 0.300 0.320

n = 400 0.551 0.667 0.830 0.869 0.266 0.306 0.343 0.352

n = 600 0.589 0.771 0.897 0.955 0.294 0.360 0.387 0.387

Table G.2: Single-wave experiment in Section G.3, 200 replications. Coverage for tests with
size 5%.

K = 10 20 30 40

n = 200 0.955 0.935 0.900 0.905
n = 400 0.965 0.945 0.900 0.950
n = 600 0.935 0.965 0.920 0.965
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Figure G.10: Adaptive experiment ρ = 2. 200 replications. The panel reports the out-of-
sample regret of the method as a function of the number of iterations.
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