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Appendix B contains additional extensions, Appendix C a numerical study , and Ap-

pendix D derivations. Appendix A at the end of the main text contains the algorithms.

Appendix B Additional extensions

B.1 Estimation error of nuisance functions with Algorithm 3

This section examines the estimation error
√

Rn(A,Z)× Bn(A,Z) in Theorem 3.3. Consider

estimating m(·) with Algorithm 3. Algorithm 3 first partitions the units into K∗ groups.

Within each group, it constructs J equally sized folds. For two units (i, v), define ϕm
v (i) ∈

{0, 1} with ϕm
v (i) = 1 if all of the following conditions hold unit v is sampled (Rv = 1); v is in

the same partition k ∈ {1, · · · , K∗} of i; and v is in any fold except the one containing unit

i.1 The effective sample size for estimation of m̂(i) is
∑n

v=1Rvϕ
m
v (i) because, Algorithm 3

uses sampled units not in the same fold of i, but in its same partition k. Define ϕe
v(i) ∈ {0, 1},

with ϕe
v(i) = 1 if all of the following conditions hold: (a) unit v is sampled or, if not sampled,

one of its friends is sampled (Rv = 1 or (1 − Rv)R
f
v = 1); (b) v is in the same partition

k ∈ {1, · · · , K∗} of i; and (c) v is in any fold except the one containing unit i, once we run

Algorithm 3 to estimate e(·). Let m ∈ M, e ∈ E , for function classes M, E , and assume

Rn(A,Z) = O
( 1

n

n∑
i=1

CME
[(

1 +
n∑

v=1

Rvϕ
m
v (i)

)−2ζm
∣∣∣Ri = 1, A, Z

])
Bn(A,Z) = O

( 1

n

n∑
i=1

1

δ2n
CEE

[(
1 +

n∑
v=1

Rvϕ
e
v(i)

)−2ζe
∣∣∣Ri = 1, A, Z

]) (B.1)

for some 1/2 ≥ ζm, ζe > 0, and CM, CE capturing the complexity of the function class.

Here, ζm characterizes the convergence rate of the conditional mean function on a sample

of independent units (by Algorithm 3), with
(
1 +

∑n
v=1Rvϕ

m
v (i)

)
denoting the effective

sample size to estimate m̂i. Similarly, ζe for the propensity score. I rescale the rates for the

propensity score by 1/δ2n because the propensity score is bounded from zero by δn. Equation
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1Following Algorithm 3’s definitions, ϕm

v (i) = 1{v ∈ (F j
k )

J
j=1 \ F

j(i)
k , k such that i ∈ ∪jF

j
k}.
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(B.1) also captures the contribution to the estimation error of those units i belonging to

groups with a few (finite number of) observations (see Algorithm 3).2

Proposition B.1. Suppose the conditions in Theorem 3.3 and Equation (B.1) hold, and

ne = αn, α ∈ (0, 1). Then
√
Rn(A,Z)× Bn(A,Z) = O

(
N 2

nC
1/2
M C

1/2
E

δnn
ζm+ζe
e

)
. In addition, if

N 1/2
n C

1/2
M C

1/2
E /nζm+ζe

e = O
(
n
−1/2
e

)
, then E

[
supπ∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] = O

(
n−ξ
e

)
.

See Appendix D.4.1 for the proof. Proposition B.1 characterizes the rate of the estimation

error. Here, N 1/2
n C

1/2
M C

1/2
E /nζm+ζe

e = O
(
n
−1/2
e

)
holds for a large class of estimators under

conditions on the maximum degree. An example is lasso. Under fixed sparsity, bounded

regression matrix, and regularities in Negahban et al. (2012), ζm = 1/2, CM = log(p), where

p is the dimension of the regression matrix. To attain N 1/2
n C

1/2
M C

1/2
E /nζm+ζe

e = O
(
n
−1/2
e

)
,

we only need that ζe for the propensity score is such that N 1/2
n C1/2

E log1/2(p)/nζe
e = O (1).

B.2 Welfare with spillovers on non-compliance

Consider the setting where spillovers also occur over individuals’ compliance. Namely, let

Di ∈ {0, 1} denote the assigned treatment and Si ∈ {0, 1} denote the selected treatment

from individual i. I model non-compliance as follows:

Yi = r
(
Si,

∑
k∈Ni

Sk, Zi, |Ni|, εi
)
, Si = hθ

(
Di,

∑
k∈Ni

Dk, Zi, |Ni|, νi
)
. (B.2)

I let νi be exogenous unobservables, independent from εi (see Proposition B.2), and (r(·), θ)
unknown, with θ denoting the set of parameters indexing h. Similarly to what discussed in

Section 2, let WA,Z(π) =
1
n

∑n
i=1 E

[
Yi

∣∣∣A,Z,{Di = π(Xi)
}n

i=1

]
be the welfare under π.

Proposition B.2 (Identification). Let Equation (B.2) hold with εi ⊥
(
(νj)

n
j=1, (εDj

)nj=1

)∣∣∣A,Z,
νi

∣∣∣A,Z, (εDj
)nj=1 ∼i.i.d. Pν . Let Pθ(Si = 1|·) denotes the conditional probability of selection

into treatment indexed by the parameters θ. For each i ∈ {1, · · · , n},

E
[
Yi

∣∣∣A,Z,{Di = π(Xi)
}n

i=1

]
=

∑
d∈{0,1},s∈{0,··· ,|Ni|}

E
[
Yi

∣∣∣Zi, |Ni|, Si = d,
∑
k∈Ni

Sk = s
]
×Hi(d, s, π),

Hi(d, s, π) = Pθ

(
Si = d

∣∣∣Zi, |Ni|, Vi(π)
) ∑

u1,··· ,ul:
∑

v uv=s

|Ni|∏
k=1

Pθ

(
S
N

(k)
i

= uk

∣∣∣Z
N

(k)
i

, |N
N

(k)
i

|, V
N

(k)
i

(π)
)
,

where Vi(π) =
{
Di = π(Xi),

∑
k∈Ni

Dk =
∑

k∈Ni
π(Xk), Zi, Zk∈Ni

}
.

2For those units i with a finite number of observations in their partition k,
∑n

v=1 Rvϕ
m
v (i) = O(1), and

O
(
E
[(

1 +
∑n

v=1 Rvϕ
m
v (i)

)−2ζm ∣∣∣A,Z,Ri = 1
])

is bounded away from (does not converge to) zero for i.
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See Appendix D.4.2 for the proof. Proposition B.2 is an identification result. The wel-

fare effect of an incentive π depends on conditional means and Hi(·). Here Hi(·) denotes

the conditional probability of selecting into treatment, conditional on the individual and

neighbors’ incentives. Its expression only depends on the individual probability of selected

treatments Pθ(Si = 1|·), conditional on individual’s and neighbors’ treatment assignments.

Interestingly, Hi(·) also depends on the treatment assigned to the second-degree neighbors;

therefore, information from second-degree neighbors is required for identification. Literature

on non compliance includes Kang and Imbens (2016), Vazquez-Bare (2020). These references

do not study welfare maximization. This motivates a different identification strategy here.

B.3 Reweighting with known and different target population

Here, we study settings where the target population differs from the population from which

the sample is drawn and the adjacency matrix of the target population is known.

Consider a population with n individuals, connected under adjacency matrix A′ and

with covariates matrix Z ′, and (A′, Z ′) are observed by the researcher. Welfare is as in

Equation (25). Define Sn(A,Z) as the empirical support of Zi, Zk∈Ni
, |Ni| for given adja-

cency matrix (A,Z), and similarly Sn(A
′, Z ′) for A′, Z ′. |Sn(A,Z)| ≤ n by construction.

Define L(z,x, l) = 1
n

∑n
i=1 1

{
Zi = z, Zk∈Ni

= x,
∑

k Ai,k = l
}
, L′(z,x, l) = 1

n

∑n
i=1 1

{
Z ′

i =

z, Z ′
k∈N ′

i
= x,

∑
k A

′
i,k = l

}
, the number of units in each population with individual covariates

z, neighbors’ observables x, and number of friends l. Estimate the empirical welfare as

W̃n(π,m
c, e) =

1

ne

n∑
i=1

Ri

L′
(
Zi, Zk∈Ni

, |Ni|
)

L
(
Zi, Zk∈Ni

, |Ni|
) {

Ii(π)

ei(π)

(
Yi −mc

i (π)
)
+mc

i (π)

}
.

Here, the empirical welfare reweights observations by the ratio of the empirical distributions

in the target population and the sampled units. Importantly, the functions L(·), L′(·) must

be observed by the researcher. L(·) is observed under the sampling assumptions in Section 2,

whereas observing L′(·) assumes that researcher observe (A′, Z ′) from the target population.

Proposition B.3. Suppose the conditions in Theorem 3.1 hold conditional also on (A′, Z ′),

and Sn(A
′, Z ′) ⊆ Sn(A,Z) almost surely. Let π̂t ∈ argmaxπ∈Πn W̃n(π,m

c, e). Then, for a

universal constant C̄ < ∞, E
[
supπ∈Πn

WA′,Z′(π)−WA′,Z′(π̂t)
∣∣∣A,Z,A′, Z ′

]
≤ C̄ΓL̄A,Z,nN

3/2
n

γδn

√
log(Nn)VC(Π)

ne
,

where L̄A,Z,n = max(Zi,Zk∈Ni
,|Ni|)∈Sn(A,Z) L

′
(
Zi, Zk∈Ni

, |Ni|
)/

L
(
Zi, Zk∈Ni

, |Ni|
)
.

See Appendix D.4.3 for a proof. Proposition B.3 shows that regret bounds depend on

the largest ratio between the empirical distribution on the target and sampled units over the

empirical support of the individuals, and neighbors’ covariates and of degree. An important

assumption is that the support Sn(A
′, Z ′) is contained in the support Sn(A,Z).
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Appendix C A numerical study

I simulate data as Yi =
1

max 1,|Ni|

(
Xiβ1+Xiβ2Di+µ

)∑
k∈Ni

Dk+Xiβ3Di+εi, εi =
ηi+

∑
k∈Ni

ηk√
2(|Ni|+1)

,

with ηi ∼i.i.d. N (0, 1). I simulate covariates as Xi ∈ [−1, 1]4, with each entry drawn inde-

pendently and uniformly between [−1, 1]. I draw β3 ∈ {−1.5, 1.5} with equal probabilities.

I consider five versions of NEWM described in the caption of Table 1.

I compare NEWM to methods that ignore network effects from Kitagawa and Tetenov

(2018); Athey and Wager (2021). Each method uses a policy function of the form π(Xi) =

1
{
Xi,1ϕ1 + Xi,2ϕ2 + ϕ3 ≥ 0

}
, estimated via MILP. First, I consider a geometric network

formation of the form Ai,j = 1
{
|Xi,2−Xj,2|/2+|Xi,4−Xj,4|/2 ≤

√
4/2.75n

}
. In the second set

of simulations, I generate Barabasi-Albert networks. I draw n/5 edges uniformly according to

Erdős-Rényi graph with probabilities 10/n, and second, I draw sequentially connections of the

new nodes to the existing ones with probability equal to the average number of connections of

the existing nodes. I simulate over 200 data sets with ne = n, and evaluate the performance

out-of-sample over 1000 networks, drawn from the same distribution. Results are in Table 1.

For n sufficiently large (n = 200), the five specifications of NEWM yield comparable results.

NEWM outperforms methods that ignore spillovers across all specifications.

Table 1: Out-of-sample median welfare over 200 replications. DR is the method in Athey and Wager
(2021) with estimated balancing score and EWM PS is the method in Kitagawa and Tetenov (2018)
with known balancing score. NEWM out1 is NEWM with a correctly specified outcome model,
and NEWM out2 its equivalent with approximate network cross-fitting. NEWM dr1 is the doubly
robust equivalent controlling for the number of treated neighbors, and NEWM dr2, NEWM dr3
control for a binned version of the number of treated neighbors as in Remark 2.5, with and without
approximate network cross-fitting. GE denotes the geometric network, and AB the Albert-Barabasi.

Welfare n = 50 n = 70 n = 100 n = 150 n = 200

GE AB GE AB GE AB GE AB GE AB

DR 1.51 0.94 1.50 1.08 1.42 1.05 1.53 0.95 1.41 0.95

EWM PS 1.21 0.93 1.23 0.92 1.32 0.93 1.38 0.90 1.29 0.95

NEWM out1 1.74 1.31 1.87 1.38 1.93 1.37 1.91 1.40 2.00 1.39

NEWM out2 1.77 1.34 1.87 1.41 1.91 1.37 1.95 1.38 1.98 1.39

NEWM dr1 1.78 1.22 1.89 1.33 1.89 1.37 1.94 1.28 1.95 1.33

NEWM dr2 1.69 1.21 1.83 1.36 1.84 1.33 1.82 1.31 1.94 1.38

NEWM dr3 1.45 1.15 1.75 1.25 1.79 1.28 1.81 1.28 1.88 1.35
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Appendix D Derivations

D.1 Notation

Definition D.1 (Proper Cover). Given an adjacency matrix A ∈ An, with n rows and

columns, a family Cn = {Cn(g)} of disjoint subsets Cn(1), Cn(2), · · · of {1, · · · , n} is a proper

cover of A if ∪gCn(g) = {1, · · · , n} and Cn(g) ⊆ {1, · · · , n} consists of units such that for

any pair of elements {i, k ∈ Cn(g), k ̸= i}, Ai,k = 0.

Definition D.2 (Chromatic number). The chromatic number χn(A), denotes the size of the

smallest proper cover of A.

Definition D.3. For a given matrix A ∈ An, I define A2 ∈ An the adjacency matrix such

that Ai,j = 1 if (i, j) are either neighbors or they share at least a common neighbor. Similarly

AM(A) is the adjacency matrix obtained after connecting units sharing common neighbors

up toM th degree; Ni,M is the set of neighbors of individual i for an adjacency matrix AM .

The proper cover of A2
n is defined as C2

n = {C2
n(g)}

χ(A2)
g=1 with chromatic number χ(A2

n).

Similarly CM
n = {CM

n (g)}χ(A
M )

g=1 with chromatic number χn(A
M
n ) is the proper cover of AM

n .

For a given set CM
n (g), I denote |CM

n (g)| the number of elements in such a set.

I will refer to χ(A) as χn(An) whenever clear from the context. Let

eci (π) = ec
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
, mc

i (π) = mc
(
π(Xi), Ti(π), Zi, |Ni|

)
,

for given functions ec,mc, and Ii(π) = 1{Ti(π) = Ti, π(Xi) = Di}, similarly to Equation (6).

In the presence of estimation error, define êi(π), m̂i(π) their corresponding estimators.

Following Devroye et al. (2013)’s notation, for xn
1 = (x1, ..., xn) being arbitrary points in

X n, for a function class F , with f ∈ F , f : X 7→ R, let F(xn
1 ) = {f(x1), ..., f(xn) : f ∈ F} .

Definition D.4. For a class of functions F , with f : X 7→ R, ∀f ∈ F and n data points

x1, ..., xn ∈ X define the lq-covering number Mq

(
η,F(xn

1 )
)

to be the cardinality of the

smallest cover {s1, ..., sN}, with sj ∈ Rn, such that for each f ∈ F , there exist an sj ∈
{s1, ..., sN} such that ( 1

n

∑n
i=1 |f(xi) − s

(i)
j |q)1/q < η. For F̄ the envelope of F , define the

Dudley’s integral as
∫ 2F̄

0

√
log

(
M1(η,F(xn

1 ))
)
dη.

For random variables X = (X1, ..., Xn), denote EX [.] the expectation with respect to X,

conditional on the other variables inside the expectation operator.

Definition D.5. Let X1, ..., Xn be arbitrary random variables. Let σ = {σi}ni=1 be i.i.d

Rademacher random variables (P (σi = −1) = P (σi = 1) = 1/2), independent of X1, ..., Xn.

The empirical Rademacher complexity is Rn(F) = Eσ

[
supf∈F | 1

n

∑n
i=1 σif(Xi)|

∣∣∣X1, ..., Xn

]
.
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D.2 Theorems

I discuss the theorems first. Appendix D.3 presents the lemmas used for these theorems.

The first theorem controls the supremum of the empirical process of interest with respect

to Π ⊇ Πn as in Assumption 2.4. Theorem D.1 imposes the same assumptions as Theorem

3.1, except that unobservables can be locally dependent up to the M th degree.

Theorem D.1. Let Assumptions 2.1, 2.2 (C), 2.3, 2.4, 3.1, 4.1 (A) hold. Consider functions

mc(·), ec(·) such that for all d ∈ {0, 1}, t ∈ Tn mc(d, t, Zi, |Ni|) ∈ [−Γ,Γ], for a finite constant

Γ, and ec(d, t, Zk∈Ni
, Rk∈Ni

, Zi, |Ni|) ∈ (γδn, 1 − γδn) almost surely. Suppose that either

(or both) (i) ec = e, or (ii) also Assumption 2.2 (A) hold and mc = m. Then for any

n ≥ 1,M ≥ 2, and a universal constant C̄ < ∞

E
[
sup
π∈Π

|Wn(π,m
c, ec)−WA,Z(π)|

∣∣∣A,Z]
≤ C̄

Γ

γδn

√
MNM+1

n log(Nn)VC(Π)

ne
. (D.1)

Proof of Theorem D.1. I organize the proof as follows. First, I derive a symmetrization

argument to bound the supremum of the empirical process in Equation (D.1) with the

Rademacher complexity of direct and spillover effects. Second, I bound the Rademacher

complexity using Lemmas D.7, D.8. Section 3.4 provides a proof sketch. Define

Qi(π,A,Z) = Ri

[
Ii(π)

eci (π)

(
Yi −mc

i (π)
)
+mc

i (π)

]
,

where I suppressed the dependence with ec,mc. Define Qn(π,A, Z) the distribution such

that
(
Qi(π,A, Z)

)n

i=1

∣∣∣A,Z ∼ Qn(π,A, Z). Define (σi)
n
i=1 i.i.d. Rademacher random vari-

ables independent of observables and unobservables. Finally, let
(
Q′

i(π,A, Z)
)n

i=1

∣∣∣A,Z ∼

Qn(π,A, Z), an independent copy of
(
Qi(π,A, Z)

)n

i=1
, conditional on (A,Z). Note that

Qi(π,A, Z) depends on π through
(
π(Xi),

∑
k∈Ni

π(Xk)
)
by Assumption 2.1.

Conditional expectation By definition of Q′
i,

E[Wn(π, e
c,mc)|A,Z] =

1

n

n∑
i=1

E[Qi(π, e
c,mc)|A,Z] =

1

n

n∑
i=1

E[Q′
i(π, e

c,mc)|A,Z]. (D.2)
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It follows:

E
[
sup
π∈Π

|Wn(π,m
c, ec)−WA,Z(π)|

∣∣∣A,Z
]

= E
[
sup
π∈Π

|Wn(π,m
c, ec)− E[Wn(π,m

c, ec)|A,Z]|
∣∣∣A,Z]

(∵ Lemma D.10)

= E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)− E[Q′

i(π,A,Z)|A,Z]
]∣∣∣|A,Z]

(∵ Eq. (D.2))

= E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

EQ′

[
Qi(π,A,Z)−Q′

i(π,A,Z)
∣∣∣A,Z]∣∣∣|A,Z]

(∵ (Q′
i)
n
i=1 ⊥ (Qi)

n
i=1|A,Z)

≤ E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

(∵ Jensen’s inequality).

(D.3)

The second to last equality takes the expectation with respect to Q′ (given Q,A,Z).

Symmetrization and proper cover Recall now Definitions D.1, D.2, D.3. Construct

an adjacency matrix AM with neighbors connected up to the M th degree, with smallest

proper cover CM
n = {Cn(j)}χ(A

M )
g=1 , CM

n (g) ⊆ {1, · · · , n},∪gCM
n (g) = {1, · · · , n}, and chromatic

number χ(AM). Note that such a cover always exists.3 By the triangular inequality

E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

≤
∑

g∈{1,··· ,χ(AM )}

E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

︸ ︷︷ ︸
:=II(g)

. (D.4)

Observe first that E[Qi(π,A, Z)−Q′
i(π,A, Z)|A,Z] = 0 since Qi, Q

′
i have the same distri-

bution. Also, if Ri = 0, then Qi = 0. Therefore, by Assumption 2.1, and Assumption 2.3 (ii),

for a given π, Qi(π,A, Z) is a deterministic function ofRi

(
Rk∈Ni

, εDi
, εDk∈Ni

, Zk∈Ni
, Zi, εi, R

f
k∈Ni

)
.

Also, note that if Ri = 1, then Rf
k = 1, for k ∈ Ni almost surely. Therefore, Qi can be written

as a deterministic function of
(
Ri, Rk∈Ni

, εDi
, εDk∈Ni

, Zk∈Ni
, Zi, εi

)
only, where we can drop

its dependence with Rf
k∈Ni

. The following holds.

• By Assumption 2.3 (ii), εDi
are i.i.d. and exogenous with respect to (A,Z, ε);

• By Assumption 2.3 (i) Ri are i.i.d. and exogenous;

• Under Assumption 4.1 (A), εi|A,Z are independent for individuals who are not neigh-

bors up to degree M ≥ 2.

3For example, in a fully connected network, the chromatic number is n, where each group only contains
one unit, while in a network with no connection, the chromatic number is one. The size of such cover
(chromatic number) will affect the bound in the statement of the theorem via the maximum degree.
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As a result, it directly follows that conditional on A,Z, for any M ≥ 2,(
Ri, Rk∈Ni

, εDi , εDk∈Ni
, Zk∈Ni

, Zi, εi

)
⊥

(
Rj , Rk∈Nj

, εDj , εDk∈Nj
, Zk∈Nj

, Zj , εj

)
j ̸∈∪M

k=1Ni,k

|A,Z.

(D.5)

Equation (D.5) implies thatQi(π,A, Z) ⊥ (Qj(π,A, Z))j ̸∈∪M
k=1Ni,k

|A,Z. Since (Qi)
n
i=1, (Q

′
i)
n
i=1|A,Z

have the same joint distribution and are independent, we also have(
Qi(π,A,Z)−Q′

i(π,A,Z)
)
⊥

(
Qj(π,A,Z)−Q′

j(π,A,Z)
)
j ̸∈∪M

k=1Ni,k

|A,Z. (D.6)

Note that (Qi)i∈CM
n (g) =d (Q′

i)i∈CM
n (g)|A,Z and are independent (since CM

n is deterministic

conditional on A). Therefore, for each group CM
n (g), by Equation (D.6), for i ∈ CM

n (g)(
Qi(π,A,Z)−Q′

i(π,A,Z)
)
⊥

(
Qj(π,A,Z)−Q′

j(π,A,Z)
)
j ̸=i,j∈CM

n (g)
|A,Z.

We can then bound II(g) in Equation (D.4) as follows

II(g) = E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σi

[
Qi(π,A,Z)−Q′

i(π,A,Z)
]∣∣∣|A,Z]

≤ E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQi(π,A,Z)
∣∣∣|A,Z]

+ E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQ
′
i(π,A,Z)

∣∣∣|A,Z]
= 2E

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQi(π,A,Z)
∣∣∣|A,Z]

.

The first equality follows from independence of Qi − Q′
i|A,Z within the subset CM

n (g), and

the fact that Qi, Q
′
i have the same distribution. The second inequality follows from the

triangular inequality and Qi, Q
′
i having the same joint distribution given A,Z.

Bound on the Rademacher complexity The following holds

E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiQi(π,A,Z)
∣∣∣|A,Z]

≤ E
[
EY,σ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiRi
Ii(π)

eci (π)
Yi

∣∣∣]
︸ ︷︷ ︸

:=i(g)

|A,Z
]

+ E
[
Eσ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiRi
Ii(π)

eci (π)
mc

i (π)
∣∣∣]

︸ ︷︷ ︸
:=ii(g)

|A,Z
]
+ E

[
Eσ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈CM

n (g)

σiRim
c
i (π)

∣∣∣]
︸ ︷︷ ︸

:=iii(g)

|A,Z
]
,

(D.7)

where EY,σ[·] denotes the conditional expectation with respect to (Y, σ) only, given all other

observables and unobservables, and similarly Eσ[·], with respect to σ only. Let C̄ < ∞ be a

universal constant. I invoke Lemma D.8 for each element in Equation (D.7) as follows.

• I invoke Lemma D.8 for i(g) with Yi in lieu of Ωi in the statement of Lemma D.8,

with third moment bounded by Γ2 by Assumption 2.2 (C); and Ii(π)
eci (π)

in lieu of gi(·) in

8



Lemma D.8, with upper bound Un = 1/(γδn) (Un as in the statement of Lemma D.8)

by Assumption 2.3 (iii). Since we sum over elements Ri1{i ∈ CM
n (g)} = 1, by Lemma

D.8

i(g) ≤ C̄
Γ

neγδn

√√√√VC(Π)Nn

n∑
i=1

Ri1{i ∈ CM
n (g)} log(Nn).

• I invoke Lemma D.8 for ii(g) where we have Ii(π)
eci (π)

mi(π) in lieu of gi(·) in the statement

of Lemma D.8, with constant Un = Γ/(γδn) by Assumption 2.2 (C) and Assumption

2.3 (iii), and Ωi = 1 in the statement of Lemma D.8. Therefore,

ii(g) ≤ C̄
Γ

neγδn

√√√√VC(Π)Nn

n∑
i=1

Ri1{i ∈ CM
n (g)} log(Nn).

• I invoke Lemma D.8 for iii(g) where we havemi(π) in lieu of gi(·) with constant Un = Γ,

and Ωi = 1 in the statement of Lemma D.8. Therefore,

iii(g) ≤ C̄
Γ

ne

√√√√VC(Π)Nn

n∑
i=1

Ri1{i ∈ CM
n (g)} log(Nn).

Summing the terms Collecting the terms together, I obtain

(D.4) ≤
∑

g∈{1,··· ,χ(AM )}

E
[ Γ

neγδn

√√√√Nn log(Nn)VC(Π)

n∑
i=1

Ri1{i ∈ CM
n (g)}

∣∣∣A,Z]
,

where the expectation is taken with respect to R = (R1, · · · , Rn). I write

∑
g∈{1,··· ,χ(AM )}

E
[ Γ

neγδn

√√√√Nn log(Nn)VC(Π)
n∑

i=1

Ri1{i ∈ CM
n (g)}

∣∣∣A,Z]

≤
∑

g∈{1,··· ,χ(AM )}

Γ

neγδn

√√√√Nn log(Nn)VC(Π)

n∑
i=1

E[Ri|A,Z]1{i ∈ CM
n (g)} (∵ Jensen’s inequality)

=
∑

g∈{1,··· ,χ(AM )}

Γ

neγδn

√
Nn log(Nn)VC(Π)ne|CM

n (g)|/n (∵ E[Ri|A,Z] = ne/n).

(D.8)

We have

(D.8) ≤ χ(AM )
Γ

neγδn

√√√√Nn log(Nn)VC(Π)ne
1

χ(AM )

∑
g∈{1,··· ,χ(AM )}

|CM
n (g)|/n (∵ concave

√
x)

= χ(AM )
Γ

neγδn

√
Nn log(Nn)VC(Π)ne

1

χ(AM )
=

Γ

γδn

√
χ(AM )Nn log(Nn)VC(Π)

ne
.

(D.9)

9



In the first inequality in (D.9) I divided and multiplied by χ(AM) and used concavity of the

square-root function. In the second equality I used the fact that {CM
n (g)} contain disjoint

sets, with
∑

g |CM
n (g)| = n. By Lemma D.2 χ(AM) ≤ MNM

n , completing the proof.

D.2.1 Theorem 3.1 and Theorem 4.2

I state these two theorems as corollaries of Theorem D.1.

Corollary 1. Theorem 3.1 holds.

Proof. Following Kitagawa and Tetenov (2018),

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z]

= E
[
sup
π∈Πn

WA,Z(π)−Wn(π̂mc,e,m
c, e) +Wn(π̂mc,e,m

c, e)−WA,Z(π̂mc,e)
∣∣∣A,Z]

≤ E
[
sup
π∈Πn

WA,Z(π)−Wn(π,m
c, e) +Wn(π̂mc,e,m

c, e)−WA,Z(π̂mc,ec)
∣∣∣A,Z]

.

(D.10)

We have (D.10) ≤ E
[
2 supπ∈Πn

|WA,Z(π) − Wn(π,m
c, e)|

∣∣∣A,Z] ≤ E
[
2 supπ∈Π |WA,Z(π) −

Wn(π,m
c, e)|

∣∣∣A,Z] (∵ Πn ⊆ Π). The proof completes by Theorem D.1, with M = 2.

Corollary 2. Theorem 4.2 holds.

Proof. Following the argument of Corollary 1, and using the fact that Πn ⊆ Π, it follows

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z]

≤ 2E
[
sup
π∈Π

|Wn(π,m
c, ec)−WA,Z(π)|

∣∣∣A,Z]
︸ ︷︷ ︸

(I)

+ 2E
[
sup
π∈Π

|Wn(π, m̂, ê)−Wn(π,m
c, ec)|

∣∣∣A,Z]
︸ ︷︷ ︸

(II)

.

Term (I) is bounded by Theorem D.1. I now study (II). In particular, (II) is equal to

E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
Yi − m̂i(π)

)
+

1

ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
− 1

ne

n∑
i=1

Ri
Ii(π)

eci (π)

(
Yi −mc

i (π)
)∣∣∣|A,Z]

≤ E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
Yi +mc

i (π)−mc
i (π)− m̂i(π)

)
− 1

ne

n∑
i=1

Ri
Ii(π)

eci (π)

(
Yi −mc

i (π)
)∣∣∣|A,Z]

+ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

≤ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

+ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri(
Ii(π)

eci (π)
− Ii(π)

êi(π)
)
(
Yi −mc

i (π)
)
|
∣∣∣A,Z]

+ E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

.

(D.11)
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I inspect each term in Equation (D.11). Since Ri ∈ {0, 1}

E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

≤ E
[ 1

ne

n∑
i=1

sup
d,s

Ri|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|
∣∣∣A,Z]

.

By Cauchy-Schwarz inequality and the triangular inequality

E
[ 1

ne

n∑
i=1

sup
d,s

Ri|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|
∣∣∣A,Z]

≤

√√√√ 1

ne

n∑
i=1

E[R2
i ]

√√√√E
[ 1

ne

n∑
i=1

sup
d,s

|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|2
∣∣∣A,Z]

=

√√√√E
[ 1
n

n∑
i=1

sup
d,s

|m̂(d, s, Zi, |Ni|)−mc(d, s, Zi, |Ni|)|2
∣∣∣A,Z]

(∵ E[R2
i ] = E[Ri] = ne/n).

For the second term we have (let eci(d, t) = ec(d, t, Zk∈Ni
, Rk∈Ni

, |Ni|) and similarly for êi(d, t))

E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri(
Ii(π)

eci (π)
− Ii(π)

êi(π)
)
(
Yi −mc

i (π)
)
|
∣∣∣A,Z]

≤ 2Γ′E
[
sup
π∈Π

1

ne

n∑
i=1

Ri|(
Ii(π)

eci (π)
− Ii(π)

êi(π)
)|
∣∣∣A,Z]

≤ 2Γ′E
[ 1

ne

n∑
i=1

Ri sup
d,t

|( 1

eci (d, t)
− 1

êi(d, t)
)|
∣∣∣A,Z]

≤ 2Γ′

√√√√E
[ 1
n

n∑
i=1

sup
d,t

|( 1

eci (d, t)
− 1

êi(d, t)
)|2

∣∣∣A,Z
]

where in the first inequality I used the fact that Yi,m
c are uniformly bounded and in the

last inequality I used Cauchy-Schwarz. For the third term in (D.11), it follows similarly

E
[
sup
π∈Π

| 1
ne

n∑
i=1

Ri
Ii(π)

êi(π)

(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

≤ 1

γδn
E
[
sup
π∈Π

1

ne

n∑
i=1

Ri|
(
m̂i(π)−mc

i (π)
)
|
∣∣∣A,Z]

≤ 1

γδn

√√√√E
[ 1
n

n∑
i=1

sup
d,t

|
(
m̂(d, t, Zi, |Ni|)−mc(d, t, Zi, |Ni|)

)
|2
∣∣∣A,Z]

.

D.2.2 Proof of Theorem 3.2

The proof constructs an appropriate adjacency matrix, matrix of covariates and distribution

of treatments and unobservables to provide the lower bound, taking into account the selection

indicators. Recall the definition of EDn(A,Z)[·] in Theorem 3.2. Let v = VC(Π), and recall,

under Assumption 2.3 (i), Ri ∼i.i.d. Bern(α), α = ne/n. Let Xi = Zi for expositional

convenience not to keep track of both Xi, Zi. Let A
∗ ∈ Ao

n, such that A∗
i,j = 0 for all i ̸= j.

Let z1, · · · , zv be v points shattered by Π, which, since X = Rd and Π has VC dimension v

they must exist. Let Z∗ such that 1
n

∑n
i=1 1{Z∗

i = zj} = 1
v
for all j ∈ {1, · · · , v}. I write

sup
A∈Ao

n,Z∈Zn
sup

Dn(A,Z)∈Pn(A,Z)

δn

N 3/2
n log1/2(Nn)

EDn(A,Z)

[(
sup
π∈Π

WA,Z(π)−WA,Z(π̂n)
)∣∣∣A,Z]

≥ sup
Dn(A∗,Z∗)∈Pn(A∗,Z∗)

δn

N 3/2
n log1/2(Nn)

EDn(A∗,Z∗)

[(
sup
π∈Π

WA∗,Z∗(π)−WA∗,Z∗(π̂n)
)∣∣∣A = A∗, Z = Z∗

]
,

(D.12)
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where, recall that δn,Nn are also a function of A∗, Z∗.

I will focus on Equation (D.12). I will indicate for |A∗, Z∗ the conditioning set |A =

A∗, Z = Z∗. Because I consider a fully disconnected network, we have δn = 1 in Assumption

2.3 (since individuals have no neighbors), and Nn = 2 for adjacency matrix A∗. I follow the

proof of Theorem 14.5 in Devroye et al. (2013), and Theorem 2.2 in Kitagawa and Tetenov

(2018), while I also condition on (A∗, Z∗), and consider random indicators Ri.

Treatment assignments and potential outcomes’ distribution Next, I select the

distribution for treatment assignments and potential outcomes. LetDi be a Bernoulli random

variable, independent of observables and unobservables with P (Di = 1) = 1/2. Let b ∈
{0, 1}v be a bit indicator which indexes a distribution Dn,b(A

∗, Z∗) ∈ Pn(A
∗, Z∗). Namely,

I restrict the class of distributions to a finite number of distributions, indexed by b. Denote

Yi(d) = r(d, 0, Zi, 0, εi), the potential outcome function, where spillovers and number of

connections are equal to zero by construction of A∗. Let P (Yi(1) = 1/2|Zi = zj) = 1/2 + η,

P (Yi(1) = −1/2|Zi = zj) = 1/2 − η for bj = 1, j ≤ v. If bj = 0, instead have P (Yi(1) =

1/2|Zi = zj) = 1/2 − η, P (Yi(1) = −1/2|Zi = zj) = 1/2 + η, where η ∈ [0, 1/2] and is

selected at the end of the proof. Consider Yi(0) = 0 almost surely.

Lower bound via Bayes risk I can therefore write the optimal treatment rule as π∗
b(zj) =

1{bj = 1}, j ≤ v, which satisfies the finite VC dimension. I have WA∗,Z∗(π∗
b) =

η
v

∑v
j=1 bj

under the distribution Dn,b. Consider b being a random variable with bj ∼i.i.d. Bern(1/2)

and independent of observables and unobservables. Denote Eb[·] the expectation with respect

to b (conditional on A∗, Z∗). For any data-dependent π̂n,
4

sup
Dn(A∗,Z∗)∈Pn

EDn(A∗,Z∗)

[
WA∗,Z∗(π∗

b)−WA∗,Z∗(π̂n)
∣∣∣A∗, Z∗

]
≥ Eb

[
EDn,b(A∗,Z∗)

[
WA∗,Z∗(π∗

b)−WA∗,Z∗(π̂n)
∣∣∣A∗, Z∗

]∣∣∣A∗, Z∗
]
,

≥ inf
π̂n

η
1

v

v∑
j=1

Eb

[
EDn,b(A∗,Z∗)

[
1{bj ̸= π̂n(zj)}

∣∣∣A∗, Z∗
]∣∣∣A∗, Z∗

]
.

(D.13)

We can see the minimization in Equation (D.13) as a risk-minimization problem with lower

bound provided by the Bayes risk. I construct a Bayes classifier of the form

π̂n(zj) = 1
{
P
(
bj = 1|

[
(Yi, Di, Dk∈Ni

)Ri, Ri

]n
i=1

, A∗, Z∗
)
≥ 1/2

}
, j ≤ v.

I can then follow the same steps of Kitagawa and Tetenov (2018), Equation (A.12), (A.13),

with k+
j = #

{
i : Zi = zj, RiYiDi = 1/2

}
, k−

j = #
{
i : Zi = zj, RiYiDi = −1/2

}
for the case

4See e.g., Appendix A.2 in Kitagawa and Tetenov (2018), Page 8.
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of this paper, and YiDiRi in lieu of YiDi in the derivation of Kitagawa and Tetenov (2018).

Following (A.12), (A.13), and the equation below (A.13) in Kitagawa and Tetenov (2018)

inf
π̂n

η
1

v

v∑
j=1

Eb

[
EDn,b(A∗,Z∗)

[
1{bj ̸= π̂n(zj)}

∣∣∣A∗, Z∗
]∣∣∣A∗, Z∗

]

≥ η

2v

v∑
j=1

a
−Eb

[
EDn,b(A∗,Z∗)

[
|
∑

i:Z∗
i
=zj

2YiDiRi|
∣∣∣A∗,Z∗

]]
, a =

1 + 2η

1− 2η
.

Lower bound on the Bayes risk The marginal distribution of Yi(1) (once we integrate

over b), is P (Yi(1) = 1/2|Z∗, A∗) = P (Yi(1) = −1/2|Z∗, A∗) = 1/2 similarly to Kitagawa

and Tetenov (2018). By independence, P (DiRi = 1) = α/2. We have

Eb

EDn,b(A∗,Z∗)

[
|

∑
i:Z∗

i =zj

2YiDiRi|
∣∣∣A∗, Z∗

] = Eb

EDn,b(A∗,Z∗)

[
|

∑
i:Z∗

i =zj ,RiDi=1

2Yi|
∣∣∣A∗, Z∗

]
=

n/v∑
k=0

(
n/v

k

)
(
α

2
)k(1− α

2
)n/v−kE

∣∣∣B(k,
1

2
)− k/2

∣∣∣,
(D.14)

where B(k, 1/2) is a binomial random variable with parameters (k, 1/2). Equation (D.14)

holds because given Z = Z∗, there are n/v many observations with Z∗
i = zj, j ≤ v by

construction of Z∗. We can write E
∣∣∣B(k, 1

2
)−k/2

∣∣∣ ≤ √
E
(
B(k, 1

2
)− k/2

)2

=
√

k
4
. It follows

(D.14) ≤
n/v∑
k=0

(
n/v

k

)
(
α

2
)k(1− α

2
)n/v−k

√
k

4
= E

√
B(n/v, α2 )

4
≤

√
E[B(n/v, α2 )]

4
=

√
nα

v8
.

Following Kitagawa and Tetenov (2018), equation (A.14) and below, with αn in lieu of n

in Kitagawa and Tetenov (2018), it follows that the Bayes risk is bounded from below by
1
2

√
v
αn

exp(−2
√
2) for αn ≥ 16v. Since ne = αn,Nn ≤ 2 for A∗, the proof completes.

D.2.3 Proof of Theorem 3.3

For the sake of brevity, I will be using the following notation

Ĩi(d, t) = 1
{
d = Di, t = Ti

}
, ẽi(d, t) = e

(
d, t, Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
, m̃i(d, t) = m

(
d, t, Zi, |Ni|

)
.

Also, let ε̃i = Yi−m(Di, Ti, Zi, |Ni|). With an abuse of notation, I will refer to êi(d, t), m̂i(d, t)

as the estimated counterpart of ẽi(d, t), m̃i(d, t) from Algorithm 3, with arguments (d, t).

Let Ii(π), ei(π),mi(π) be defined as in Equation (6), and the beginning of Section 3.1, and

êi(π), m̂i(π) be defined as in Algorithm 3 (Equation (32)), as a function of the treatment

assignment rule π (therefore êi(π) := êi(π(Xi), Ti(π)) and similarly for m̂i(π)). Recall the
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definitions of K∗, F j
k in Algorithm 3: K∗ denotes the number of partitions obtained under

Algorithm 3, where we have k ∈ {1, · · · , K∗} many partitions. Within each partition, we

have j ∈ {1, · · · , J} folds F j
k . For each k ∈ {1, · · · , K∗}, ∪J

j=1F
j
k never contains two units

that are either neighbors or share a common neighbor. Let R = (R1, · · · , Rn).

The argument I present in the current proof applies to any K∗ obtained from Algorithm

3, and any configurations of folds (F j
k )

J
j=1, k ∈ {1, · · · , K∗} obtained from Algorithm 3,

including settings with folds F j
k with one or few units.5

Preliminary decomposition Following the same argument of Corollary 1, since Πn ⊆ Π,

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z]

≤ 2E
[
sup
π∈Π

|Wn(π,m, e)−WA,Z(π)|
∣∣∣A,Z]

︸ ︷︷ ︸
(I)

+ 2E
[
sup
π∈Π

|Wn(π, m̂, ê)−Wn(π,m, e)|
∣∣∣A,Z]

︸ ︷︷ ︸
(II)

.

Term (I) is bounded by Theorem D.1. I now study (II).

(II) = E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

(mi(π)− m̂i(π)) + ε̃i
Ii(π)

êi(π)
+ m̂i(π)−mi(π)

)∣∣∣|A,Z]
= E

[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)
(mi(π)− m̂i(π)) +Riε̃i

Ii(π)

êi(π)
−Ri

(Ii(π)
ei(π)

− 1
)
(m̂i(π)−mi(π))

∣∣∣|A,Z]
.

The last equality follows after adding and subctracting Ri
Ii(π)
ei(π)

(mi(π)− m̂i(π)). It follows

(II) ≤E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)
(mi(π)− m̂i(π))

∣∣∣|A,Z]
︸ ︷︷ ︸

(i)

+E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Riε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣|A,Z]
︸ ︷︷ ︸

(ii)

+ E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Riε̃i
Ii(π)

ei(π)

∣∣∣|A,Z]
︸ ︷︷ ︸

(iii)

+E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
ei(π)

− 1
)
(m̂i(π)−mi(π))

∣∣∣|A,Z]
︸ ︷︷ ︸

(iv)

.

(D.15)

5Algorithm 3 estimates m̂(i), 1/ê(i) as zero functions for those units i, assigned to groups k ∈ {1, · · · ,K∗}
with few (a finite) number of units. The estimation error for such units contributes directly to the average
error in Equation (D.16). Appendix B.1 show how to control the estimation error in (D.16).
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Bounding (i) Consider (i) first. We have

(i) = E
[
sup
π∈Π

∣∣∣ 1
ne

n∑
i=1

Ri

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)
Ri(mi(π)− m̂i(π))

∣∣∣|A,Z]
(∵ Ri ∈ {0, 1})

≤

√√√√ 1

ne
E
[ n∑

i=1

Ri sup
d,t

( 1

ẽi(d, t)
− 1

êi(d, t)

)2∣∣∣A,Z]√√√√ 1

ne
E
[ n∑

i=1

Ri sup
d,t

(
m̃i(d, t)− m̂i(d, t)

)2∣∣∣A,Z]

=

√√√√E[Ri/ne]E
[ n∑

i=1

sup
d,t

( 1

ẽi(d, t)
− 1

êi(d, t)

)2∣∣∣Ri = 1, A, Z
]

(∵ Defn of conditional expectation)

×

√√√√E[Ri/ne]E
[ n∑

i=1

sup
d,t

(
m̃i(d, t)− m̂i(d, t)

)2∣∣∣Ri = 1, A, Z
]
=

√
Rn(A,Z)× Bn(A,Z).

(D.16)

Summands in (ii) and (iii), (iv) Next, I show that each summand in (ii), (iii), (iv) has

a zero conditional expectation, given R,A,Z, for any ê(i), m̂(i) in Algorithm 3.

(ii) I start from summands in (ii). I write the expectation of each summand as

E
[
Riε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣R,A,Z
]

= E
[
Ri

(
r(π(Xi), Ti(π), Zi, |Ni|, εi)−mi(π)

)(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣R,Z,A
]

= E
[
E
[
Ri

(
r(π(Xi), Ti(π), Zi, |Ni|, εi)−mi(π)

)(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣êi(π), R, Z,A
]∣∣∣R,Z,A

]
= Ri E

[(
r(π(Xi), Ti(π), Zi, |Ni|, εi)−mi(π)

)
|A,Z,R

]
︸ ︷︷ ︸

=0

E
[(Ii(π)

êi(π)
− Ii(π)

ei(π)

)∣∣∣R,Z,A
]

(∵ Alg 3 and Assumptions 2.3(i, ii)) = 0.

(D.17)

The last equality follows from the fact that Ti(π) (in Equation (4)) is a deterministic

function of (A,Z), εi is independent of êi(π) given (R,Z,A) by Algorithm 3, and εi is

conditionally independent of (Di, Ri)
n
i=1 given A,Z, by Assumption 2.3 (i, ii).

(iii) For (iii), E[Riε̃iIi(π)/ei(π)|R,A,Z] = 0 directly by Assumptions 2.3 (i, ii).

(iv) For summands in (iv), we have:

E
[
Ri

(Ii(π)
ei(π)

− 1
)
(m̂i(π)−mi(π))

∣∣∣R,A,Z
]

= Ri E
[(Ii(π)

ei(π)
− 1

)∣∣∣R,A,Z
]

︸ ︷︷ ︸
=0

E
[
(m̂i(π)−mi(π))

∣∣∣R,A,Z
]
= 0.

(D.18)
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The first equality follows because m̂i(π) is independent of (Di, Dk∈Ni
) conditional on

(R,A,Z) by Algorithm 3 and Assumption 2.3 (ii).

Bounds for (ii) Using the triangular inequality and the law of iterated expectations, I

write (letting êi(·) be the estimated propensity score function for i)

(ii) ≤E
[ K∗∑
k=1

J∑
j=1

E
[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈F j

k

Riε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣|êi∈F j
k
(·), R,A, Z

]
︸ ︷︷ ︸

:=(Mj
k)

∣∣∣A,Z]
,

(D.19)

where here we also condition on R and the estimated functions êi for units in the fold i ∈ F j
k .

Next, we bound each component (M j
k) in (D.19). We make the following observations.

(1) (F j
k )

J
j=1, K

∗ are deterministic functions of (R,A) by construction of Algorithm 3.

(2) For each i ∈ F j
k , E

[
Riε̃i

(
Ii(π)
êi(π)

− Ii(π)
ei(π)

)∣∣∣A,R,Z, êi∈F j
k
(·)

]
= 0 by (D.17) and independence

of êi∈F j
k
(·) with ε̃i (independence follows from Alg 3 and Assumptions 2.3 (i,ii)).6

(3) Conditional on (êi∈F j
k
(·), R,A, Z), we have that

{
Riε̃i

(
Ii(π)
êi(π)

(·)− Ii(π)
ei(π)

)}
are mutually

independent among units in the same fold (i ∈ F j
k ), by 2.3 (i,ii), and Alg 3.

Therefore, by (2), and (3) above I can invoke standard symmetrization arguments for centered

independent random variables (see Lemma 6.4.2 in Vershynin, 2018) to bound

(M j
k) ≤ 2E

[
Eε̃,σ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈F j

k

σiRiε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣]|êi∈F j
k
(·), R,A, Z

]
(D.20)

for (σ1, · · · , σn) be i.i.d. exogenous Radamacher random variables (recall that Eε̃,σ[·] indicates
that the inner expectation is conditional on everything else except σ, ε̃).

I can now directly use Lemma D.8 to bound the right-hand-side of (D.20). Namely, I

invoke Lemma D.8 where Ωi in the statement of Lemma D.8 is ε̃i in Equation (D.20), gi(·)
in Lemma D.8 is

(
Ii(π)
êi(π)

− Ii(π)
ei(π)

)
in Equation (D.20); Un in the statement of Lemma D.8 is

2
γδn

in (D.20). Therefore, by Lemma D.8, for a universal constant C̄ < ∞

Eε̃,σ

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈F j

k

σiRiε̃i

(Ii(π)
êi(π)

− Ii(π)

ei(π)

)∣∣∣] ≤ C̄Γ

ne

√√√√Nn log(Nn)

n∑
i=1

Ri1{i ∈ F j
k}VC(Π).

6Independence follows from the fact that ∪J
j=1F

j
k does not contain two sampled individuals that are either

neighbors or share a common neighbor. Therefore, we never use information from (Di, Dk∈Ni
) to estimate

êi(·) for all i : Ri = 1. Also, note that the argument holds if, for estimating the propensity score for i, we also

use information from the neighbors of the units in ∪J
j=1F

j
k \F j(i)

k which have not been sampled, where F
j(i)
k

denotes the fold containing i. These units (i.e., non-sampled neighbors of elements in ∪J
j=1F

j
k \F

j(i)
k ) cannot

be neighbors of i (with Ri = 1) since ∪J
j=1F

j
k does not contain sampled units with a common neighbor.
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It follows

J∑
j=1

E
[ K∗∑

k

(M j
k)
∣∣∣A,Z]

≤ JE
[
K∗ C̄Γ

ne

√∑J
j=1

∑K∗

k=1Nn log(Nn)
∑n

i=1Ri1{i ∈ F j
k}VC(Π)

JK∗

∣∣∣A,Z]
(∵ concavity of

√
x)

≤ E
[√

JK∗ C̄Γ

ne

√√√√Nn log(Nn)

n∑
i=1

RiVC(Π)
∣∣∣A,Z]

(∵ ∪K∗,J
k=1,j=1F

j
k ⊆ {1, · · · , n})

≤ E
[√

Jχ(A2)
C̄Γ

ne

√√√√Nn log(Nn)
n∑

i=1

RiVC(Π)
∣∣∣A,Z]

(∵ K∗ ≤ χ(A2) by Lem D.9)

≤
√

Jχ(A2)
C̄Γ

ne

√√√√Nn log(Nn)

n∑
i=1

E[Ri]VC(Π) (∵ Jensen’s inequality).

(D.21)

By Assumption 2.3 (i) (D.21) ≤
√

Jχ(A2)C̄Γ
√

Nn log(Nn)VC(Π)
ne

. By construction of Algorithm

3, J = O(1). By Lemma D.5, χ(A2) ≤ 2N 2
n .

Rademacher complexity bounds for (iii) Since (iii) does not depend on estimators,

the bound for (iii) follows from the same argument in Theorem D.1. Recall the definitions

of χ(A2), C2
n(g) I used in Theorem D.1. Following the proof of Theorem D.1 (Paragraph

“Symmetrization and proper cover”), I can write

(iii) ≤
∑

g∈{1,··· ,χ(A2)}

E
[
Eσ,ε̃

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

Riε̃i
Ii(π)

ei(π)

∣∣∣]|A,Z]
.

I can now bound Eσ,ε̃

[
supπ∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)
Riε̃i

Ii(π)
ei(π)

∣∣∣] directly with Lemma D.8, with ε̃i in

lieu of Ωi in Lemma D.8 and Ii(π)/ei(π) in lieu of gi(·) in Lemma D.8, with upper bound

Un = 2/(γδn). Following the same argument as in Equation (D.8)

∑
g∈{1,··· ,χ(A2)}

E
[
Eσ,ε̃

[
sup
π∈Π

∣∣∣ 1
ne

∑
i∈C2

n(g)

Riε̃i
Ii(π)

ei(π)

∣∣∣]|A,Z]
≤ c′

Γ
√
χ(A2

n)

γδn

√
Nn log(Nn)VC(Π)

ne
.

By Lemma D.5, χ(A2) ≤ 2N 2
n , for a universal constant c′ < ∞.

Rademacher complexity bounds for (iv) The bound for (iv) follows verbatim as the

bound for (ii), where, here, instead of conditioning on êi∈F j
k
as in Equation (D.19), I condition

on m̂i∈F j
k
. This is omitted for space constraints. The proof completes.
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D.2.4 Proof of Theorem 4.1

Define W tr
A,Z(π) =

1
n

∑n
i=1 m

(
π(Xi), Ti(π), Zi, |Ni|

)
1
{
|Ni| ≤ logγ(κn)

}
the trimmed version

of welfare. Following Corollary 1,

E
[
sup
π∈Πn

WA,Z(π)−WA,Z(π̂
tr
κn
)
∣∣∣A,Z]

≤ 2E
[
sup
π∈Π

∣∣∣WA,Z(π)−W tr
n (π)

∣∣∣|A,Z]
≤ 2E

[
sup
π∈Π

∣∣∣W tr
A,Z(π)−W tr

n (π)
∣∣∣|A,Z]

+ 2 sup
π∈Π

∣∣∣W tr
A,Z(π)−WA,Z(π)

∣∣∣. (D.22)

The bounds for the first component in the right-hand side of Equation (D.22) follows ver-

batim the proof of Theorem D.1, since E[W tr
n (π)|A,Z] = W tr

A,Z(π), with the difference that

the overlap constant is γlogγ(κn)+1 under Assumption 2.3 (iii). For the second component,

∣∣∣W tr
A,Z(π)−WA,Z(π)

∣∣∣ ≤ 1

n

n∑
i=1

m
(
π(Xi), Ti(π), Zi, |Ni|

)(
1− 1

{
|Ni| ≤ logγ(κn)

})
. (D.23)

Here, (D.23) = O
(

1
n

∑n
i=1 1

{
|Ni| > logγ(κn)

})
, by 2.2 (C) and Holder’s inequality.

D.2.5 Proof of Theorem 4.4

Define W (π) = EA′,Z′ [WA′,Z′(π)] and W (π̂mc,e) = EA′,Z′ [WA′,Z′(π̂mc,e)|π̂mc,e], where π̂mc,e ⊥
(A′, Z ′) by assumption. We can write, following similar steps as in Equation (D.10) with

W (π) in lieu of WA,Z(π), supπ∈ΠW (π)−W (π̂mc,e) ≤ 2 supπ∈Π |W (π)−Wn(π,m
c, e)|. There-

fore, by taking expectations,

sup
π∈Π

W (π)− E[W (π̂mc,e)] = E
[
sup
π∈Π

W (π)−W (π̂mc,e)
]
≤ 2E

[
sup
π∈Π

|W (π)−Wn(π,m
c, e)|

]
= 2E

[
sup
π∈Π

∣∣∣Wn(π,m
c, e)−WA,Z(π) +WA,Z(π)− E[WA′,Z′(π)]

∣∣∣]
= 2E

[
sup
π∈Π

∣∣∣Wn(π,m
c, e)−WA,Z(π)

∣∣∣]︸ ︷︷ ︸
(A)

+2E
[
sup
π∈Π

∣∣∣WA,Z(π)− E[WA′,Z′(π)]
∣∣∣]︸ ︷︷ ︸

(B)

.

(D.24)

(A) can be bounded using directly Theorem D.1 and the law of iterated expectations.

D.2.6 Proof of Proposition 4.5

To show that Proposition 4.5 I need to show that (i) the VC dimension of Π̃n is at most

VC(Π) up-to a constant factor; (ii) overlap holds for any class of policy π ∈ Π̃n, namely

ei(π) ∈ (γδn, 1− γδn). The rest of the proof then follows verbatim from Theorem 3.1.

First, for (i), note that by Theorem 13.1 in Devroye et al. (2013), the VC dimension of

the classifier π̃(x, d) = π(x)(1 − d) equals the VC dimension of π(x), namely VC(Π). By

Lemma 29.4 in Devroye et al. (2013) it follows that the VC dimension of Π̃n equals VC(Π).

18



Second, for (ii), for π̃(x, d) = π(x)(1− d) + d

P
(
Di = π̃(Xi, Di)|Zi, Ri = 1

)
=

P (Di = 1|Zi, Ri = 1) if π(Xi) = 1

1 otherwise.

It follows that P
(
Di = π̃(Xi, Di)|Zi, Ri = 1

)
≥ min{P (Di = 1|Zi, Ri = 1), P (Di =

0|Zi, Ri = 1)} ∈ (γ, 1 − γ). Similarly, I can show that P
(
Di = π̃(Xi, Di)|Zi, Ri = 0, Rf

i =

1
)

∈ (γ, 1 − γ) and P (Ti = t|Zi, Ri = 1, Rk∈Ni
, Zk∈Ni

, |Ni|) ≥ δn almost surely for any

t ∈ Tn, under Assumption 2.3 (ii). Intuitively, because I always treat those units also treated

in the experiment, overlap for π̃ ∈ Π̃n is guaranteed, under overlap in the experiment. It

follows that the propensity score ei(π̃) = e(π̃(Xi, Di), Ti(π̃), Zi, Zk∈Ni
, Rk∈Ni

, |Ni|), π̃ ∈ Π̃n

satisfies the overlap conditions imposed in Assumption 2.3. Finally, it is easy to show that

Lemma 2.1 directly holds also for any π̃ ∈ Π̃n, following verbatim the proof of Lemma 2.1,

reweighting for ei(π̃). The rest of the proof follows verbatim the one of Theorem 3.1 once we

define the policy as Di + (1 −Di)π(Xi), and the outcomes evaluated at the new policy are

r
(
Di+(1−Di)π(Xi), Ti(π), Zi, |Ni|, εi

)
with Ti(π) = gn

(∑
k∈Ni

Dk+(1−Dk)π(Xk), Zi, |Ni|
)
.

D.3 Lemmas

Lemma D.2. The following holds: χ(An) ≤ χ(AM
n ) ≤ MNM

n for all n ≥ 1.

Proof of Lemma D.2. The first inequality follows by Definition D.3. The second inequality

follows by Brook’s Theorem (Brooks, 1941), since the maximum degree under AM
n is bounded

by Nn +Nn ×Nn + · · ·+
∏M

s=1Nn ≤ MNM
n .

Lemma D.3. For i ∈ {1, · · · , n} consider functions fi : Tn 7→ [−Un, Un] for some Un > 0,

and Tn ⊆ Z. Then for any i ∈ {1, · · · , n}, n ≥ 1, fi(t) is 2Un-Lipschitz in t.

Proof of Lemma D.3. For any t, t′ ∈ Z,
∣∣∣fi(t) − fi(t

′)
∣∣∣ ≤ 2Un for t ̸= t′, by the triangular

inequality. Since Tn ⊆ Z is discrete,
∣∣∣fi(t)− fi(t

′)
∣∣∣ ≤ 2Un|t− t′|.

Lemma D.4. For any i ∈ {1, · · · , n}, let Xi ∈ X be an arbitrary random variable and F a

class of uniformly bounded functions with envelope F̄ . Let Ωi|X1, · · · , Xn be random variables

independently but not necessarily identically distributed, where Ωi ≥ 0 is a scalar. Assume

that for some u > 0, E[Ω2+u
i |Z] < B, ∀i ∈ {1, · · · , n}. In addition, assume that for any

fixed points xn
1 ∈ X n, for some Vn ≥ 0, for all n ≥ 1,

∫ 2F̄

0

√
log

(
M1

(
η,F(xn

1 )
))

dη <
√
Vn.

Let σi be i.i.d Rademacher random variables independent of (Ωi)
n
i=1, (Xi)

n
i=1. Then for a
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constant 0 < CF̄ < ∞ that only depend on F̄ and u, for all n ≥ 1∫ ∞

0

E
[
sup
f∈F

∣∣∣ 1
n

n∑
i=1

σif(Xi)1{Ωi > ω}
∣∣∣|X1, · · · , Xn

]
dω ≤ CF̄

√
BVn

n
.

Proof of Lemma D.4. The proof follows verbatim the proof of Lemma A.5 in Kitagawa and

Tetenov (2019), with two small differences that do not affect the argument of the proof: I

must control the Rademacher complexity using the Dudley’s entropy integral bound (instead

of the VC dimension), and Ωi are independent but not necessarily identically distributed

random variables. Given that the argument follows verbatim the one of Lemma A.5 of

Kitagawa and Tetenov (2019), the proof is omitted for space constraints.7

Lemma D.5. Take any k ≥ 2. Let F1, · · · ,Fk be classes of bounded functions with VC

dimension v and envelope F̄ < ∞. Let

Jn =
{
f1(f2 + ...+ fk), fj ∈ Fj , j = 1, · · · , k

}
, Jn(x

n
1 ) =

{
h(x1), · · · , h(xn);h ∈ Jn

}
.

For arbitrary fixed points xn
1 ∈ X n, for any n ≥ 1, k ≥ 2, v ≥ 1,

∫ 2F̄

0

√
log

(
M1

(
η,J (xn

1 )
))

dη <

cF̄
√

k log(k)v for a constant cF̄ < ∞ that only depends on F̄ .

Proof of Lemma D.5. Without loss of generality let F̄ ≥ 1 (since if less than one the envelope

is also uniformly bounded by one). Let F−1,n(x
n
1 ) = {f2(xn

1 ) + ... + fk(x
n
1 ), fj ∈ Fj, j =

2, ..., kn}. By Devroye et al. (2013), Theorem 29.6, M1

(
η,F−1,n(x

n
1 )
)
≤

∏k
j=2M1

(
η/(k −

1),Fj(x
n
1 )
)
. By Theorem 29.7 in Devroye et al. (2013),

M1

(
η,Jn(x

n
1 )
)
≤

k∏
j=2

M1

( η

2(k − 1)F̄
,Fj(x

n
1 )
)
M1

( η

2F̄
,F1(x

n
1 )
)
. (D.25)

By standard properties of covering numbers, for a generic set H, N1(η,H) ≤ N2(η,H). It

follows (D.25) ≤
∏k

j=2M2

(
η

2(k−1)F̄
,Fj(x

n
1 )
)
M2

(
η
2F̄

,F1(x
n
1 )
)
. I now apply a uniform entropy

bound for the covering number. By Theorem 2.6.7 of Van Der Vaart and Wellner (1996),

we have that for a universal constant C < ∞ (that without loss of generality we can assume

C ≥ 1), M2

(
η

2(k−1)F̄
,Fj(x

n
1 )
)
≤ C(v + 1)(16e)(v+1)

(
2F̄ 2(k−1)

η

)2v

which implies that

log
(
M1

(
η,Jn(x

n
1 )
))

≤
kn−1∑
j=1

log
(
M2

( η

2F̄ (k − 1)
,Fj(x

n
1 )
))

+ log
(
M2

( η

2F̄
,F1(x

n
1 )
))

≤ k log
(
C(v + 1)(16e)v+1

)
+ k2v log(2CF̄ 2(k − 1)/η).

7The reader may refer to a technical note that collects lemmas from past literature available at dviviano.
github.io/projects/note preliminary lemmas.pdf for details or Appendix E below.
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Since
∫ 2F̄

0

√
k log

(
C(v + 1)(16e)v+1

)
+ kn2v log(2CF̄ 2(k − 1)/η)dη ≤ cF̄

√
k log(k)v for a

constant cF̄ < ∞, the proof completes.

We discuss the Ledoux and Talagrand (2011)’s inequality for the case of interest here.

Lemma D.6. For all i ∈ {1, · · · , n}, let ϕi : R 7→ R be such that |ϕi(a)− ϕi(b)| ≤ L|a− b|
for all a, b ∈ R, with ϕi(0) = 0, and arbitrary L > 0. Then, for any n ≥ 1, L > 0, any

Un ⊆ Rn,Kn ⊆ {0, 1}n, with u = (u1, · · · , un) ∈ Un, α = (α1, · · · , αn) ∈ Kn,

1

2
Eσ

[
sup

u∈Un,α∈Kn

∣∣∣ 1
n

n∑
i=1

σiϕi(ui)αi

∣∣∣] ≤ LEσ

[
sup

u∈Un,α∈Kn

∣∣∣ 1
n

n∑
i=1

αiσiui

∣∣∣].
Proof of Lemma D.6. The proof follows closely the one of Theorem 4.12 in Ledoux and

Talagrand (2011) while dealing with the additional α vector. We provide here the main

argument and refer to Ledoux and Talagrand (2011) for additional details. First, note that

if Un is unbounded, there will be settings such that the right hand side is infinity and the

result trivially holds. Therefore, let Un be bounded. We aim to show that

E
[

sup
u∈U2,α∈K2

α1u1 + σ2ϕ(u2)α2

]
≤ E

[
sup

u∈U2,α∈K2

α1u1 + Lσ2u2α2

]
. (D.26)

If Equation (D.26), it follows that

E
[

sup
u∈U2,α∈K2

α1ϕ1(u1)σ1 + σ2ϕ(u2)α2|σ1
]
≤ E

[
sup

u∈U2,α∈K2

α1ϕ1(u1)σ1 + Lσ2u2α2

∣∣∣σ1].
Because σ1ϕ(u1) simply transforms U2, and we can iteretively apply this result.

I first prove Equation (D.26). Define for a, b ∈ {0, 1}2, I(u, s, a, b) := 1
2

(
u1a1+a2ϕ(u2)

)
+

1
2

(
s1b1− b2ϕ(s2)

)
. I want to show that the right hand side in Equation (D.26) is larger than

I(u, s, a, b) for all u, s ∈ U2 and a, b ∈ {0, 1}2. Since I am taking the supremum of I(u, s, a, b)

over u, s, a, b, I can assume without loss of generality (as in Ledoux and Talagrand, 2011)

u1a1 + a2ϕ(u2) ≥ s1b1 + b2ϕ(s2), s1b1 − b2ϕ(s2) ≥ u1a1 − a2ϕ(u2). (D.27)

I can now define four quantities of interest

q1 = b1s1 − b2ϕ(s2), q2 = b1s1 − Ls2b2, q′1 = a1u1 + La2u2, q′2 = a1u1 + a2ϕ(u2).

I consider four different cases, similarly to Ledoux and Talagrand (2011) and argue that for

any value of (a1, a2, b1, b2) ∈ {0, 1}4, 2I(u, s, a, b) = q1 + q′2 ≤ q′1 + q2.

Case 1 Start from the case a2u2, s2b2 ≥ 0. We know that ϕ(0) = 0, so that |b2ϕ(s2)| ≤ Lb2s2.

Now assume that a2u2 ≥ b2s2. In this case q1 − q2 = Lb2s2 − b2ϕ(s2) ≤ La2u2 − a2ϕ(u2) =

q′1 − q′2 since |a2ϕ(u2) − b2ϕ(s2)| ≤ L|a2u2 − b2s2| = L(a2u2 − b2s2). To see why this last

21



claim holds, note that for a2, b2 = 1, then the results hold by the condition a2u2 ≥ b2s2

and Lipschitz continuity. If instead a2 = 1, b2 = 0, the claim trivially holds. While the case

a2 = 0, b2 = 1, then it must be that s2 = 0 since we assumed that a2u2 ≥ 0, b2s2 ≥ 0 and

a2u2 ≥ b2s2. Thus q1 − q2 ≤ q′1 − q′2. If instead b2s2 ≥ a2u2, then use −ϕ instead of ϕ and

switch the roles of s, u giving a similar proof.

Case 2 Let a2u2 ≤ 0, b2s2 ≤ 0. The proof is as Case 1, switching the signs where necessary.

Case 3 Let a2u2 ≥ 0, b2s2 ≤ 0. Then a2ϕ(u2) ≤ La2u2, since a2 ∈ {0, 1} and by Lipschitz

properties of ϕ, −b2ϕ(s2) ≤ −b2Ls2 so that a2ϕ(u2)− b2ϕ(s2) ≤ a2Lu2 − b2Ls2.

Case 4 Let a2u2 ≤ 0, b2s2 ≥ 0. Then the claim follows symmetrically to Case 3.

The conclusion of the proof follows verbatim the one in Ledoux and Talagrand (2011).

Lemma D.7. Let Π, Π′ be two function classes, each with VC dimension v, and π : X 7→
{0, 1} for any π ∈ Π,Π′. For i ∈ {1, · · · , n}, take arbitrary (Xk∈Ni

, Xi), Xi ∈ X ,Ωi ∈
R, Ri ∈ {0, 1}, adjacency matrix A, and functions fi : Z 7→ [−Un, Un], for a positive

constant Un > 0. Assume that E[|Ωi|3|(Ri)
n
i=1, (Xi)

n
i=1, A] < B, for some B < ∞, and

(Ωi)
n
i=1|(Ri)

n
i=1, (Xi)

n
i=1, A are independent but not necessarily identically distributed. Let

σ1, · · · , σn be i.i.d. Rademacher random variables, independent of
[(

Xi, Ri,Ωi

)n

i=1
, A

]
. Then

for a universal constant c0 < ∞, for any n ≥ 1, v = VC(Π) = VC(Π′)

EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Rifi

( ∑
k∈Ni

π2(Xk)
)
π1(Xi)σiΩi

∣∣∣] ≤ c0Un

√√√√vBNn log(Nn)
n∑

i=1

Ri. (D.28)

Proof of Lemma D.7. First, note that since Ri ∈ {0, 1}, and we take the expectation condi-

tional on (Ri)
n
i=1, we can interpret the sum in Equation (D.28) as a sum over elements

∑n
i=1 Ri

many elements. Also, note that from Lemma D.3, we have that fi(t) is 2Un-Lipschitz in t.

First decomposition First, we add and subtract the value of the function fi(0) at zero.

The left hand side in Equation (D.28) equals

EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσi

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0) + fi(0)

)
Ωiπ1(Xi)

∣∣∣]
≤ EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσi

(
fi

( ∑
k∈Ni

π2(Xk)
)
− f(0)

)
Ωiπ1(Xi)

∣∣∣]︸ ︷︷ ︸
(1)

+EΩ,σ

[
sup
π1∈Π

∣∣∣ n∑
i=1

Riσifi(0)Ωiπ1(Xi)
∣∣∣]︸ ︷︷ ︸

(2)

.

(D.29)

First, I bound (1). I write

(1) = EΩ,σ

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσi

(
fi

(∑
kNi

π2(Xk)
)
− fi(0)

)
|Ωi|sign(Ωi)π1(Xi)

∣∣∣]
= EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
|Ωi|π1(Xi)

∣∣∣] (D.30)
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where σ̃i = sign(Ωi)σi which are i.i.d. Rademacher random variables independent of (Ωi, Xi, Ri)
n
i=1, A,

since P (σ̃i = 1|Ω) = P (σisign(Ωi) = 1|Ω) = 1/2. Using the fact that |Ωi| ≥ 0, I have

(D.30) = EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− f(0)

)∫ ∞

0
1{|Ωi| > ω}dωπ1(Xi)

∣∣∣]
≤ EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∫ ∞

0

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣dω]
≤

∫ ∞

0
EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣]dω.
(D.31)

Next, I use the law of iterated expectation to first take the expectation over σ̃ (conditional

on Ω) and then take the expectation over Ω. I also divide and multiplied by Un. I obtain

(D.31) ≤ Un

∫ ∞

0
EΩ

[
Eσ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i
1

Un

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣]]dω.
(D.32)

Lipschitz property Let ϕi(t) =
1
Un

(fi(t)−fi(0)). Here, ϕi is Lipschitz in t, with Lipschitz

constant equal to 1. In addition, ϕi(0) = 0. By Lemma D.68,

Eσ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i
1

Un

(
fi

( ∑
k∈Ni

π2(Xk)
)
− fi(0)

)
1{|Ωi| > ω}π1(Xi)

∣∣∣]
≤ 2Eσ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

( ∑
k∈Ni

π2(Xk)
)
1{|Ωi| > ω}π1(Xi)

∣∣∣]. (D.33)

I can therefore write

(D.32) ≤ 2Un

∫ ∞

0
EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

( ∑
k∈Ni

π2(Xk)
)
1{|Ωi| > ω}π1(Xi)

∣∣∣]dω.
Function reparametrization I now consider a reparametrization of the function class.

Define X̃i ∈ XNn = (Xi, Xk∈Ni
, ∅, · · · , ∅), where for the entries h > |Ni|+1, X̃

(h)
i = ∅, denot-

ing the hth entry of X̃i. Without loss of generality, let π(∅) = 0. Define πj ∈ Πj a function

class of the form πj(X̃i) = π(X̃
(j)
i ), π ∈ Π′ for j > 1 and π1(X̃i) = π(X̃

(1)
i ), π ∈ Π, i.e.,

equal to π applied to the jth entry of the vector X̃i. Since this is a trivial reparametrization,

8Conditional on X,A,Ω, I invoke Lemma D.6 with (π1(Xi)1{|Ωi| > ω})ni=1 in lieu of (α1, · · · , αn) ∈ Kn ⊆
{0, 1}n in the statement of Lemma D.6, since π1(Xi)1{|Ωi| > ω} is binary. Here (

∑
k∈Ni

π2(Xk))
n
i=1 is in

lieu of (u1, · · · , un) ∈ Un in Lemma D.6. The spaces Kn,Un in Lemma D.6, here are those defined (given
Ω, X,A), by π1(Xi)1{|Ωi| > ω}, π1 ∈ Π and (

∑
k∈Ni

π2(Xk))
n
i=1, π2 ∈ Π′, respectively.
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VC(Πj) = VC(Π) (= VC(Π′) by assumption) for all j ∈ {1, · · · ,Nn}.9 I can write

Un

∫ ∞

0
EΩ,σ̃

[
sup

π1∈Π,π2∈Π′

∣∣∣ n∑
i=1

Riσ̃i

( ∑
k∈Ni

π2(Xk)
)
1{|Ωi| > ω}π1(Xi)

∣∣∣]dω
≤ Un

∫ ∞

0
EΩ,σ̃

[
sup

π̃1∈Π1,··· ,π̃Nn∈ΠNn

∣∣∣ n∑
i=1

Riσ̃i

(Nn−1∑
k=1

π̃k+1(X̃i)
)
1{|Ωi| > ω}π̃1(X̃i)

∣∣∣]dω
= Un

∫ ∞

0
EΩ,σ̃

[
sup
π̃∈Π̃n

∣∣∣ n∑
i=1

Riσ̃iπ̃(X̃i)1{|Ωi| > ω}
∣∣∣]dω

where Π̃n =
{
π1

(∑Nn−1
j=2 πj+1

)
, πj ∈ Πj, j = 1, · · · ,Nn

}
. I now apply Lemma D.5, using

the fact that VC(Πj) = VC(Π) = VC(Π′), for any j ∈ {1, · · · ,Nn}. By Lemma D.5,

for any n ≥ 1, the Dudley’s integral of the function class Π̃n is uniformly bounded by

C
√

Nn log(Nn)VC(Π), for a finite universal constant C. By Lemma D.4, since I am summing

over
∑n

i=1 Ri elements (conditional on (R1, · · · , Rn)), for a universal constant C̄ ′ < ∞

Un

∫ ∞

0
EΩ,σ̃

[
sup
π̃∈Π̃n

∣∣∣ n∑
i=1

Riσ̃iπ̃(X̃i)1{|Ωi| > ω}
∣∣∣]dω ≤ C̄ ′Un

√√√√BNnVC(Π) log(Nn)
n∑

i=1

Ri.

Term (2) Next, I bound the term (2) in Equation (D.29). Similar to (1),

EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσifi(0)Ωiπ(Xi)
∣∣∣] ≤ UnEΩ,σ̃

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσ̃i|
fi(0)

Un
Ωi|π(Xi)

∣∣∣]
≤ Un

∫ ∞

0
EΩ,σ̃

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσ̃i1{|fi(0)Ωi|/Un > ω}π(Xi)
∣∣∣]dω.

Since Π has finite VC dimension, by Theorem 2.6.7 of Van Der Vaart and Wellner (1996) (the

argument is the same as in Lemma D.5),
∫ 2

0

√
M1(η,Π(xn

1 ))dη < C
√
VC(Π) for a universal

constant C, and for any xn
1 ∈ X n. Since EΩ[|fi(0)Ωi/Un|3] ≤ B (fi(0)/Un ∈ [−1, 1]) we can

apply Lemma D.4, with |fi(0)Ωi|/Un in lieu of |Ωi| in Lemma D.4, and obtain

Un

∫ ∞

0
EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Riσi1{|fi(0)Ωi|/Un > ω}π(Xi)
∣∣∣]dω ≤ C ′Un

√√√√BVC(Π)
n∑

i=1

Ri

for a universal constant C ′ < ∞. The proof completes.

The following lemma is a direct corollary of Lemma D.7.

Lemma D.8. Let π ∈ Π, be a function class, with π : X 7→ {0, 1}. For i ∈ {1, · · · , n}, take
arbitrary (Xk∈Ni

, Xi), Xi ∈ X ,Ωi ∈ R, Ri ∈ {0, 1}, adjacency matrix A, and functions gi :

9See e.g., Theorem 29.4 in Devroye et al. (2013).
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Z×{0, 1} 7→ [−Un, Un], for a positive constant Un > 0. Assume that E[|Ωi|3|(Ri)
n
i=1, (Xi)

n
i=1, A] <

B, for some B < ∞, and (Ωi)
n
i=1|(Ri)

n
i=1, (Xi)

n
i=1, A are independent but not necessarily

identically distributed. Let σ1, · · · , σn be i.i.d. Rademacher random variables, independent

of
[(

Xi, Ri,Ωi

)n

i=1
, A

]
. Then for a universal constant c0 < ∞, for any n ≥ 1

EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), π(Xi)
)
σiΩi

∣∣∣] ≤ c0Un

√√√√VC(Π)BNn log(Nn)

n∑
i=1

Ri. (D.34)

Proof of Lemma D.8. By Lemma D.3, gi(t, 1), gi(t, 0) are 2Un-Lipschitz in t. It follows

EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), π(Xi)
)
σiΩi

∣∣∣]
≤ EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), 1
)
π(Xi)σiΩi

∣∣∣]+ EΩ,σ

[
sup
π∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π(Xk), 0
)
(1− π(Xi))σiΩi

∣∣∣]
(D.35)

It follows

(D.35) ≤ EΩ,σ

[
sup

π1∈Π,π2∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π2(Xk), 1
)
π1(Xi)σiΩi

∣∣∣]
+ EΩ,σ

[
sup

π′
1∈Π,π′

2∈Π

∣∣∣ n∑
i=1

Rigi

( ∑
k∈Ni

π′
2(Xk), 0

)
(1− π′

1(Xi))σiΩi

∣∣∣].
By Lemma 29.4 in Devroye et al. (2013), the VC dimension of the function class 1 −
π, π ∈ Π equals the VC(Π). By Lemma D.7 each term in Equation (D.35) is bounded

by CUn

√
VC(Π)BNn log(Nn)

∑n
i=1Ri, for a universal constant C < ∞.

Lemma D.9. Let K∗ be as in Algorithm 3 (Equation 30). Then K∗ ≤ χ(A2) almost surely.

Proof of Lemma D.9. To prove the claim it suffices to show that a partition such that the

constraints in Equation (30) holds exists, and such a partition has size at most χ(A2), for all

possible realizations of R = (R1, · · · , Rn). As a first step, observe that for fixed K, binary

variables Gj,k ∈ {0, 1}, j ∈ {1, · · · , n}, k ∈ {1, · · · , K}, with
∑K

k=1Gj,k = 1∀j ∈ {1, · · · , n},

K∑
k=1

n∑
j=1

1{j ∈ Ni or Ni ∩Nj ̸= ∅}Gj,kGi,k = 0 implies

K∑
k=1

n∑
j=1

RiRj1{j ̸∈ Ii}Gj,kGi,k = 0.

Namely,
∑K

k=1

∑n
j=1 1{j ∈ Ni or Ni ∩ Nj ̸= ∅}Gj,kGi,k = 0 is a stricter constraint than∑K

k=1

∑n
j=1RiRj1{j ̸∈ Ii}Gj,kGi,k = 0, in Equation (30), for all R1, · · · , Rn, Ri ∈ {0, 1}

(because Ri is binary). I can therefore bound the solution to the optimization problem in
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Equation (30) as follows

K∗ ≤ arg min
K∈Z

min
G∈{0,1}n×K

K

such that
K∑
k=1

n∑
j=1

1{j ∈ Ni or Ni ∩Nj ̸= ∅}Gj,kGi,k = 0, and
K∑
k=1

Gi,k = 1∀i.

(D.36)

The right-hand side in Equation (D.36) equals χ(A2) by definition of smallest proper cover.

D.3.1 Identification

Proof of Lemma 2.1. Let e
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
= ei(π), Ii(π) = 1{Ti(π) =

Ti, π(Xi) = Di}. Under Assumption 2.1, I can write

E
[
Ri

Ii(π)

ei(π)
Yi

∣∣∣A,Z]
= E

[
Ri

Ii(π)

ei(π)
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]
. (D.37)

Under Assumption 2.3 (i,ii),

(D.37) = E
[RiIi(π)

ei(π)
|A,Z

]
× E

[
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]
.

By Assumption 2.3 (i), E
[RiIi(π)

ei(π)
|A,Z

]
= E

[
RiE

[Ii(π)
ei(π)

|A,Z, (Ri)j ̸=i, Ri = 1
]]

=
ne

n
.

Lemma D.10. Let Assumptions 2.1, 2.3 hold. Then

1

ne

n∑
i=1

E
[
Ri

1{Ti(π) = Ti, d = Di}

ec
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)(Yi −mc
(
π(Xi), Ti(π), Zi, |Ni|

))∣∣∣A,Z]

+
1

ne

n∑
i=1

E
[
Rim

c
(
π(Xi), Ti(π), Zi, |Ni|

)∣∣∣A,Z]
=

1

n

n∑
i=1

E
[
r
(
(π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]
if either ec = e or (and) Assumption 2.2 (A) holds with mc = m.

Proof of Lemma D.10. Define eci(π) = ec
(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
, Ii(π) = 1{Ti(π) =

Ti, π(Xi) = Di},mc
i = mc(π(Xi), Ti(π), Zi, |Ni|). Whenever ec = e, the result directly follows

from Lemma 2.1. Let now mc = m and Assumption 2.2 (A) hold. Then (since the indicators

R are independent of ε by Assumption 2.2)

E
[RiIi(π)

eci (π)

(
Yi −mc

i (π)
)∣∣∣A,Z]

= E
[
Ri

Ii(π)

eci (π)

(
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)
−mi(π)

)∣∣∣A,Z]
= E

[
Ri

Ii(π)

eci (π)

∣∣∣A,Z]
× E

[(
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)
−mi(π)

)∣∣∣A,Z]
= 0.

By Assumption 2.3 (i), 1
ne

∑n
i=1 E

[
Rimi(π)

∣∣∣A,Z] = 1
n

∑n
i=1m(π(Xi), Ti(π), Zi, |Ni|).
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D.4 Proofs for “Additional extensions”

D.4.1 Proof of Proposition B.1

Define k(i) the partition k ∈ {1, · · · , K∗} associated with unit i under Algorithm 3 and j(i)

the fold j within partition k(i) associated with i under Algorithm 3. Recall the definition

of ϕm
s (i) = 1{k(s) = k(i), j(s) ̸= j(i)} is Section B.1. Note that ϕm

s (i) are random variables

since they depend on sampled indicators R1, · · · , Rn. By Lemma D.9, K∗ ≤ χ(A2).

For each partition k, Algorithm 3 creates J folds with the same number of units. I can

write
∑n

s=1Rsϕ
m
s (i) ≥

⌊
J−1
J

∑n
s=1Rs1{k(s) = k(i)}

⌋
where I take the floor function for cases

where J is not a multiple of the number of sampled units in the partition k(i). We have

1

n

n∑
i=1

E
[(

1 +
n∑

s=1

Rsϕ
m
s (i)

)−2ζm
|Ri = 1, A, Z

]
≤ 1

n

n∑
i=1

E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{k(s) = k(i)}
)−2ζm}

|Ri = 1, A, Z
]
.

(D.38)

Worst-case partition Next, I replace the (random) partitions k ∈ {1, · · · , K∗} with

worst-case non-random partitions. Denote kw(i) ∈ {1, · · · , χ(A2)} the worst-case partition

kw(·) ∈ arg max
k(i)∈{1,··· ,χ(A2)},i∈{1,··· ,n}

1

n

n∑
i=1

E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{k(s) = k(i)}
)−2ζm}

|Ri = 1, A, Z
]

such that k(i) ̸= k(j),∀j ∈ Ni or Ni ∩Nj ̸= ∅,
χ(A2)∑
k=1

1{k(i) = k} = 1, ∀i ∈ {1, · · · , n}.

(D.39)

Here, kw(·) always exists by definition of χ(A2).10 In addition, kw does not depend on the

realized R by construction. I claim that

(D.38) ≤ 1

n

n∑
i=1

E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{kw(s) = kw(i)}
)−2ζm}

|Ri = 1, A, Z
]

︸ ︷︷ ︸
(I)

(D.40)

Equation (D.40) holds for two reasons: (i) K∗ ≤ χ(A2) by Lemma D.9; (ii) I can show that

the constraint in Equation (D.39) is a stricter constraint than the constraint in Equation

(30) for any realization of (R1, · · · , Rn) (see the proof of Lemma D.9 for details).

10Existence is satisfied if a feasible solution to Equation (D.39) exists. One example is the smallest proper
cover Cn(A2) as in Definition D.1 for the adjacency matrix A2. This satisfies the constraints in Equation
(D.39) by definition. A proper cover always exists (e.g., if the network is fully connected, χ(A2) = n).
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Upper bound on (I) Take any i ∈ {1, · · · , n} such that 1{kw(s) = kw(i)} = 1 for some

s ̸= i. It follows from Cribari-Neto et al. (2000) (equation at the bottom of Page 274)

(I) ≤ (
J − 1

J
)−2ζmE

[(
1 +

∑
s̸=i

Rs1{kw(s) = kw(i)}
)−2ζm

|Ri = 1, A, Z
]

(∵ Ri = 1)

≤
(J−1

J )−2ζm(
ne
n

∑
s ̸=i 1{kw(s) = kw(i)}

)2ζm
+O

( 1

(
∑

s ̸=i 1{kw(s) = kw(i)})2ζm+1

)
(∵ ne/n = α ∈ (0, 1), J = O(1)).

(D.41)

In the right-hand-side (first equation) we added one since kw(i) = kw(s) for s = i. If instead

there is no s ̸= i, such that 1{kw(s) = kw(i)} = 1, then trivially (I) = O(1).

Sum over all partitions Summing over all χ(A2) partitions, we obtain

(D.40) ≤
χ(A2)∑
k=1

∑n
i=1 1{kw(i) = k}

n
E
[
max

{
1,
(J − 1

J

n∑
s=1

Rs1{kw(s) = k}
)−2ζm}]

≤ O(χ(A2)/n)︸ ︷︷ ︸
(A)

+O
( χ(A2)∑

k=1

(∑n
i=1 1{kw(i) = k}

n

)1−2ζm( J

(J − 1)ne

)2ζm)
+O

( 1

n

χ(A2)∑
k=1

(1 +
∑
s ̸=i

1{kw(i) = k})−2ζm
)

︸ ︷︷ ︸
(B)

where (B) correspond to cases where partitions kw(i) contain at least two elements (and

bounded as in Equation (D.41))11, and (A) corresponds to partitions with only one element,

whose overall number is at most χ(A2) (since there are at most χ(A2) many partitions, and

for such partitions
∑n

i=1 1{kw(i)=k}
n

= 1/n). For (B) we write

(B) ≤ O
(
χ(A2)

( 1

χ(A2)

χ(A2)∑
k=1

∑n
i=1 1{kw(i) = k}

n

)1−2ζm( J

(J − 1)ne

)2ζm)

+O
(
χ(A2)

1

n
(

1

χ(A2)

χ(A2)∑
k=1

n∑
i=1

1{k(i) = k})1−2ζm
)

(∵ x−2ζm ≤ x1−2ζm for x ≥ 1, concave x1−2ζm).

It follows that (B) ≤ χ(A2)
(

J
(J−1)ne

)2ζm
+ O(χ(A2)n−2ζm) (∵

∑χ(A2)
k=1

∑n
i=1 1{k(i) = k} =

n). From D.2, χ(A2) ≤ 2N 2
n , which completes the proof for the conditional mean after simple

rearrangement (since the bound for (A) follows directly from Lemma D.2). The argument

follows verbatim for Bn(A,Z), taking into account 1/δ2n, and omitted for brevity.
11For the first component in (A) we sum over all i ∈ {1, · · · , n} instead of n − 1 elements since the last

term is absorbed in O(1).
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D.4.2 Proof of Proposition B.2

Denote Eπ[·] the expectation conditional on
{
Di = π(Xi)

}n

i=1
, let R = (Ri)

n
i=1. We have

Eπ

[
r
(
Si,

∑
k∈Ni

Sk, Zi, |Ni|, εi
)∣∣∣A,Z]

= E
[
r
(
Si(π),

∑
k∈Ni

Sk(π), Zi, |Ni|, εi
)∣∣∣A,Z,R]

, (D.42)

where Si(π) = hθ

(
π(Xi),

∑
k∈Ni

π(Xk), Zi, |Ni|, νi
)
. It follows that Equation (D.42) equals∑

s∈{0,··· ,|Ni|}

E
[
r(d, s, Zi, |Ni|, εi)

∣∣∣Si(π) = d,
∑
k∈Ni

Sk(π) = s, Z,A
]

︸ ︷︷ ︸
(i)

×P
(
Si(π) = d,

∑
k∈Ni

Sk(π) = s
∣∣∣A,Z,R)

︸ ︷︷ ︸
(ii)

.

Since (εj)
n
j=1 ⊥

(
Z,A, (εDj

, νj, Rj)
n
j=1

)
, I can show (i) = E

[
r(d, s, Zi, |Ni|, εi)

∣∣∣Si = d,
∑

k∈Ni
Sk =

s, Z,A,R
]
. Consider now (ii). Observe that by indepedence and exogeneity of (νj)

n
j=1,

(ii) = P
(
Si(π) = d

∣∣∣A,Z,R)
×

∑
u1,··· ,ul:

∑
v uv=s

|Ni|∏
k=1

P
(
S
N

(k)
i
(π) = uk

∣∣∣A,Z,R)
.

Using exogeneity of νi, I have

P
(
Si(π) = d

∣∣∣A,Z,R)
= P

(
Si = d

∣∣∣Zi, |Ni|, Di = π(Xi),
∑
k∈Ni

Dk =
∑
k∈Ni

π(Xk), Zk∈Ni
, Zi

)
.

Similar reasoning also applies to neighbors’ selected treatments, omitted for brevity.

D.4.3 Proof of Proposition B.3

First, we show that E
[
W̃n(π,m

c, e)
∣∣∣A,Z,A′, Z ′

]
= WA′,Z′(π). Let Li = L(Zi, Zk∈Ni

, |Ni|)
and similarly L′

i = L′(Zi, Zk∈Ni
, |Ni|). Let T ′

i , Z
′
i, |Ni|′ be the neighbors’ exposure, covariates

and number of neighbors of i in the target population. Following Lemma D.10 below, by

exogeneity of (R1, · · · , Rn) (Assumption 2.3 (i,ii))

RiE
[Ii(π)
ei(π)

(
Yi −mc

i (π)
)
+mc

i (π)
∣∣∣A,Z,R1, · · · , Rn

]
= RiE

[
r
(
(π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z]
= Rim

(
π(Xi), Ti(π), Zi, |Ni|

)
.

Therefore, it follows that

E
[
W̃n(π,m

c, e)
∣∣∣A,Z]

=
1

n

n∑
i=1

L′
i

Li
m
(
π(Xi), Ti(π), Zi, |Ni|

)
=

1

n

n∑
i=1

m
(
π(X ′

i), T
′
i (π).Z

′
i, |Ni|′

)
,

The last equality follows by construction of L′
i, Li. Sn(A

′, Z ′) ⊆ Sn(A,Z) guarantees that

there are no individuals in the target population outside the sample population’s support.

Because E[W̃n(π,m
c, e)|A,Z,A′, Z ′] = WA′,Z′(π), the same argument of the proof of

Theorem D.1 holds, with the difference that the Lipschitz constant in the proof of Theorem

D.1 multiplies by L̄A,Z,n.
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