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Appendix B contains additional extensions, Appendix C a numerical study , and Ap-

pendix D derivations. Appendix A at the end of the main text contains the algorithms.

Appendix B Additional extensions

B.1 Estimation error of nuisance functions with Algorithm 3

This section examines the estimation error \/R,,(4, Z) x B, (A, Z) in Theorem 3.3. Consider
estimating m(-) with Algorithm 3. Algorithm 3 first partitions the units into K* groups.
Within each group, it constructs J equally sized folds. For two units (i,v), define ¢"(i) €
{0, 1} with ¢*(i) = 1 if all of the following conditions hold unit v is sampled (R, = 1); v is in
the same partition k € {1,--- , K*} of 4; and v is in any fold except the one containing unit
i.! The effective sample size for estimation of m® is Y. | R,¢™(i) because, Algorithm 3
uses sampled units not in the same fold of 7, but in its same partition k. Define ¢¢(i) € {0, 1},
with ¢¢ (i) = 1 if all of the following conditions hold: (a) unit v is sampled or, if not sampled,
one of its friends is sampled (R, = 1 or (1 — R,)R! = 1); (b) v is in the same partition
ke{l,---,K*} of i; and (c) v is in any fold except the one containing unit ¢, once we run

Algorithm 3 to estimate e(:). Let m € M, e € &£, for function classes M, &, and assume

Ru(A, Z) = O(% Zn: CME[(l + Zn: qub;”(i)) T R =1, A, Z])

L " (B.1)
Bo(A, Z) = (9(% 3 5%051[-3 [(1 +y Rvgbg(i))*% Ri=1,A, Z])

=1 " v=1

for some 1/2 > (,,( > 0, and Cyy, Ce capturing the complexity of the function class.
Here, (,, characterizes the convergence rate of the conditional mean function on a sample
of independent units (by Algorithm 3), with <1 + > Rvgbg’l(i)> denoting the effective
sample size to estimate m;. Similarly, (. for the propensity score. I rescale the rates for the

propensity score by 1/§2 because the propensity score is bounded from zero by §,,. Equation
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(B.1) also captures the contribution to the estimation error of those units ¢ belonging to

groups with a few (finite number of) observations (see Algorithm 3).2

Proposition B.1. Suppose the conditions in Theorem 3.3 and Equation (B.1) hold, and
2~1/2~1/
ne =an,a € (0,1). Then /R,(A,Z) x B,(A,Z) =0 (%) In addition, if

./\/7}/26'/1\{(20;/2/71?“6 :(9< _1/> thenE[supﬂen Waz(m)—Waz(Tme)

A,z =0 ().

See Appendix D.4.1 for the proof. Proposition B.1 characterizes the rate of the estimation
error. Here, N/ 20/1\{120;/ 2/ némtee = O <ne_ Y 2) holds for a large class of estimators under
conditions on the maximum degree. An example is lasso. Under fixed sparsity, bounded
regression matrix, and regularities in Negahban et al. (2012), ¢, = 1/2, Cx = log(p), where
p is the dimension of the regression matrix. To attain Né/zC/l\,/tQCé/z/ngmH‘f =0 (ne_l/2>,

we only need that (, for the propensity score is such that Nﬁﬂ(}ém logl/Q(p)/nge =0(1).

B.2 Welfare with spillovers on non-compliance

Consider the setting where spillovers also occur over individuals’ compliance. Namely, let
D; € {0,1} denote the assigned treatment and S; € {0,1} denote the selected treatment
from individual i. I model non-compliance as follows:

Y, = r(Si, Z Sk, Z;, ’Ni|,8i), S; = hg (Dh Z Dy, Z;, |NZ|7V1) (B.2)

kEN; kEN;

I let v; be exogenous unobservables, independent from ¢; (see Proposition B.2), and (r(-), 0)
unknown, with 6 denoting the set of parameters indexing h. Similarly to what discussed in
Section 2, let Wy z(m) = 25" | E [Yi : {Di = W(Xi)} } be the welfare under 7.

i=1

Proposition B.2 (Identification). Let Equation (B.2) hold with e; L ((1/])] B (5Dj)§‘:1> A Z,

Vi

A, Z,(ep;)j=1 ~iid P,. Let Py(Si = 1|-) denotes the conditional probability of selection

into treatment indexed by the parameters 0. For each i € {1,--- ,n},

E[vi|a,2.{Di=r(x)} | = 3 E[Yi|Zi, INil, Si = d. 3" Sy = 5| x Hi(d, 5,m),

dG{O,l},SG{O,---JNi‘} kEN;
||
H;(d,s,n) :PQ(Si =d Zi,\Ni|,Vi(7r)) Z HP@(SN@) :uk‘ZNgk),| (k)|, N(k)( ))

ULy Uiy, Uy =8 k=1

where Vi(r) = { Dy = 7(X0), e, D = Sren, 7(X0), Zis Zven, |
ZFor those units i with a finite number of observations in their partition k, Y ._, R,¢™(i) = O(1), and

0 (E (142, R @)

;= }) is bounded away from (does not converge to) zero for i.
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See Appendix D.4.2 for the proof. Proposition B.2 is an identification result. The wel-
fare effect of an incentive m depends on conditional means and H,(-). Here H;(-) denotes
the conditional probability of selecting into treatment, conditional on the individual and
neighbors’ incentives. Its expression only depends on the individual probability of selected
treatments Pp(S; = 1|-), conditional on individual’s and neighbors’ treatment assignments.
Interestingly, H;(-) also depends on the treatment assigned to the second-degree neighbors;
therefore, information from second-degree neighbors is required for identification. Literature
on non compliance includes Kang and Imbens (2016), Vazquez-Bare (2020). These references

do not study welfare maximization. This motivates a different identification strategy here.

B.3 Reweighting with known and different target population

Here, we study settings where the target population differs from the population from which
the sample is drawn and the adjacency matrix of the target population is known.

Consider a population with n individuals, connected under adjacency matrix A" and
with covariates matrix Z’, and (A’, Z’) are observed by the researcher. Welfare is as in
Equation (25). Define S,,(A, Z) as the empirical support of Z;, Zyen,, |N;| for given adja-
cency matrix (A, 7), and similarly S,(A’, Z") for A", Z'. |S.(A,Z)| < n by construction.
Define L(z,x,1) = %Z?:l 1{Zi =2, Zyen; = X, 9 Aigp = l},L’(z,X, ) = %2:;1 1{Z{ =

2, 2y N =X DA =1 }, the number of units in each population with individual covariates

z, neighbors’ observables x, and number of friends [. Estimate the empirical welfare as

n D Zi, Zen,, INi|) (7
~ 1 iy “kEN; > ) I,L
Wy(m,me)=—>» R; ( ) {eg;

i
Me =1 L<ZZaZkEN17|Nl|)

(¥ = mém) + mim) |

Here, the empirical welfare reweights observations by the ratio of the empirical distributions
in the target population and the sampled units. Importantly, the functions L(-), L'(-) must
be observed by the researcher. L(-) is observed under the sampling assumptions in Section 2,

whereas observing L'(-) assumes that researcher observe (A’, Z’) from the target population.

Proposition B.3. Suppose the conditions in Theorem 3.1 hold conditional also on (A', Z'),
and Sp(A',Z") C S,(A, Z) almost surely. Let 7' € argmaxyer, W, (m,m,€). Then, for a

A F 3/2
A2, 4,7 < Shagalle, [los@VEM),
Yon Ne

where Lz, = MAX(Z; Zye n, | Ni|)ESn(A,2) L'<Zz', Zren;, \M\)/L (Zz', ZreN;, N,|>

See Appendix D.4.3 for a proof. Proposition B.3 shows that regret bounds depend on

universal constant C' < 00, E[SUPweHn Warz/(m)=War 2 (")

the largest ratio between the empirical distribution on the target and sampled units over the
empirical support of the individuals, and neighbors’ covariates and of degree. An important

assumption is that the support S, (A’, Z’) is contained in the support S, (4, 7).
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Appendix C A numerical study

I'simulate data as Y; = ;7 (XZ& +X152DZ+,M> > ken; Det XiBsDitei g0 = 2N D

with 7; ~;;q N(0,1). 1 simulate covariates as X; € [—1,1]*, with each entry drawn inde-
pendently and uniformly between [—1,1]. T draw 5 € {—1.5,1.5} with equal probabilities.
I consider five versions of NEWM described in the caption of Table 1.

I compare NEWM to methods that ignore network effects from Kitagawa and Tetenov
(2018); Athey and Wager (2021). Each method uses a policy function of the form 7 (X;) =
1{XZ-71¢1 + Xioo + 3 > O}, estimated via MILP. First, I consider a geometric network

formation of the form A; ; = 1{|XZ-72—X]'72|/2+]Xi74—Xj74\/2 < \/m} In the second set
of simulations, I generate Barabasi-Albert networks. I draw n/5 edges uniformly according to
Erdés-Rényi graph with probabilities 10/n, and second, I draw sequentially connections of the
new nodes to the existing ones with probability equal to the average number of connections of
the existing nodes. I simulate over 200 data sets with n. = n, and evaluate the performance
out-of-sample over 1000 networks, drawn from the same distribution. Results are in Table 1.
For n sufficiently large (n = 200), the five specifications of NEWM yield comparable results.

NEWM outperforms methods that ignore spillovers across all specifications.

Table 1: Out-of-sample median welfare over 200 replications. DR is the method in Athey and Wager
(2021) with estimated balancing score and EWM PS is the method in Kitagawa and Tetenov (2018)
with known balancing score. NEWM_outl is NEWM with a correctly specified outcome model,
and NEWM _out?2 its equivalent with approximate network cross-fitting. NEWM _dr1 is the doubly
robust equivalent controlling for the number of treated neighbors, and NEWM_dr2, NEWM _dr3
control for a binned version of the number of treated neighbors as in Remark 2.5, with and without
approximate network cross-fitting. GE denotes the geometric network, and AB the Albert-Barabasi.

Welfare n = 50 n="70 n = 100 n = 150 n = 200

GE AB GE AB GE AB GE AB GE AB

DR 1.51 0.94 1.50 1.08 142 1.05 1.53 0.95 1.41 0.95
EWM PS 1.21 0.93 1.23 0.92 1.32 0.93 1.38 0.90 1.29 0.95
NEWM_outl 1.74 1.31 1.87 1.38 1.93 1.37 1.91 1.40 2.00 1.39
NEWM_ out2 1.77 1.34 1.87 141 1.91 1.37 1.95 1.38 1.98 1.39
NEWM.drl 1.78 1.22 1.89 1.33 1.89 1.37 1.94 1.28 1.95 1.33
NEWM.dr2 1.69 1.21 1.83 1.36 1.84 1.33 1.82 1.31 1.94 1.38
NEWM.dr3 145 1.15 1.75 1.25 1.79 1.28 1.81 1.28 1.88 1.35




Appendix D Derivations

D.1 Notation

Definition D.1 (Proper Cover). Given an adjacency matrix A € A,, with n rows and
columns, a family C, = {C,(g)} of disjoint subsets C,(1),C,(2),-- of {1,---,n} is a proper
cover of A if U,C,(g9) = {1,--- ,n} and C,(g9) C {1,--- ,n} consists of units such that for
any pair of elements {i,k € C,(g),k # i}, Aix = 0. ]

Definition D.2 (Chromatic number). The chromatic number y,,(A), denotes the size of the

smallest proper cover of A. O

Definition D.3. For a given matrix A € A,, I define A? € A, the adjacency matrix such
that A; ; = 1if (¢, j) are either neighbors or they share at least a common neighbor. Similarly
AM(A) is the adjacency matrix obtained after connecting units sharing common neighbors

up to M degree; N; 5 is the set of neighbors of individual i for an adjacency matrix AM. [

The proper cover of A2 is defined as C2 = {C2(g) ;C(:’f) with chromatic number x(A2).

Similarly CM = {CM(qg) ;‘ﬁM) with chromatic number ¥, (A}) is the proper cover of AM.
For a given set CM(g), I denote |CM(g)| the number of elements in such a set.

I will refer to x(A) as x,(A,) whenever clear from the context. Let
s(m) = e (n(X2), Ti(m), Ziewss Buens Zis Nl ), mi(m) = me (w(X0), Ti(), Z2s |G )

for given functions e, m¢, and [;(7) = 1{T;(7) = T;, 7(X;) = D;}, similarly to Equation (6).

In the presence of estimation error, define é;(), 7;(7) their corresponding estimators.
Following Devroye et al. (2013)’s notation, for 27 = (x4, ..., x,) being arbitrary points in

A", for a function class F, with f € F, f: X — R, let F(a}) = {f(z1), ..., f(xn) : f € F}.

Definition D.4. For a class of functions F, with f : X — R, Vf € F and n data points
Zi,...,T, € X define the [,-covering number M, (n,f(x?)) to be the cardinality of the
smallest cover {si,...,sn}, with s; € R", such that for each f € F, there exist an s; €
{s1,..., sy} such that (2>°7"  |f(z;) — 35,")’4)1/(1 < 7. For F the envelope of F, define the

Dudley’s integral as f;p \/log (Ml(n, .F(x’f)))dn. O

For random variables X = (X1, ..., X,,), denote Ex[.] the expectation with respect to X,

conditional on the other variables inside the expectation operator.

Definition D.5. Let Xi,..., X,, be arbitrary random variables. Let ¢ = {o;}"; be i.i.d
Rademacher random variables (P(0; = —1) = P(0; = 1) = 1/2), independent of X7, ..., X,,.
The empirical Rademacher complexity is R, (F) = E, [supfe]r L5, aif(Xi)|‘X1, o Xn} .



D.2 Theorems

I discuss the theorems first. Appendix D.3 presents the lemmas used for these theorems.
The first theorem controls the supremum of the empirical process of interest with respect
to Il D II,, as in Assumption 2.4. Theorem D.1 imposes the same assumptions as Theorem

3.1, except that unobservables can be locally dependent up to the M degree.

Theorem D.1. Let Assumptions 2.1, 2.2 (C), 2.3, 2.4, 3.1, 4.1 (A) hold. Consider functions
me(-), e(+) such that for all d € {0,1},t € T, m°(d,t, Z;,|N;|) € [T, ], for a finite constant
[, and e“(d,t, Zyen,, Rren,, Zi, |Ni|) € (¥0n,1 — v0,) almost surely. Suppose that either
(or both) (i) e¢ = e, or (ii) also Assumption 2.2 (A) hold and m® = m. Then for any

n>1,M > 2, and a universal constant C' < 0o

T [MNY ! log(N,)VC(IT
E[sup |Wh,(m,m€, e°) — WA7z(7T)‘)A, Z] <C— N 0g(Nn) VC( ) (D.1)
well Y0n Ne

Proof of Theorem D.1. 1 organize the proof as follows. First, I derive a symmetrization
argument to bound the supremum of the empirical process in Equation (D.1) with the
Rademacher complexity of direct and spillover effects. Second, I bound the Rademacher

complexity using Lemmas D.7, D.8. Section 3.4 provides a proof sketch. Define

_p |fim
QZ(ﬂ-7A7 Z) - RZ I:ef(ﬂ')
where I suppressed the dependence with e, m¢. Define Q,(m, A, Z) the distribution such

that <Qi(7T,A, Z)):;l‘A,Z ~ Qun(m, A, Z). Define (0;), i.i.d. Rademacher random vari-

(¥ = () + i)

ables independent of observables and unobservables. Finally, let (Q;(W,A, A )>7'1—1‘A’ AR

Qn(m, A, Z), an independent copy of <Qi(7r,A, Z)) , conditional on (A, 7). Note that

i=1

Qi(m, A, Z) depends on 7 through <7T(Xi), > keN, W(Xk)> by Assumption 2.1.

Conditional expectation By definition of @,

E[W,, (7, e, m°)|A, Z] = %ZE[Qi(W, e, m°)|A, Z] = % > E[Qj(r, e, m)|A, Z]. (D.2)
=1 ;



It follows:
]E{sup |W (m,m€, e) — WA,Z(W)|‘A7 Z}

_ ;Hilgﬁ (Wi (10, mC, €€) — E[W (1, m®, ¢)| A, Z]\‘A, Z] (- Lemma D.10)
—E :fféﬁ an: [Qilm, A, 2) ~ ElQi(r, A, 2)|4, Z]]||A, 7] (- Eq. (D.2))
= E[sup ;ZEQ (QilrA,2) = Qim A, )| A Z|||A, 2] (- QD L (Q)l4,2)
<E ilelg Tlé [Qi(w,A, Z) - Ql(m, A, Z)} ‘|A, Z} (. Jensen’s inequality).

(D.3)
The second to last equality takes the expectation with respect to Q' (given @, A, 7).

Symmetrization and proper cover Recall now Definitions D.1, D.2, D.3. Construct
an adjacency matrix AM with neighbors connected up to the M degree, with smallest
proper cover CM = {C,(4) ;‘(:?M),ny(g) c{1,---,n},u,CM(g) ={1,--- ,n}, and chromatic
number y(AM). Note that such a cover always exists.® By the triangular inequality

n

E[igg nl; (@i, 4.2) - Q. A.2)] |14, 2]
< ¥ E[sup’i 3 [Qi(mA,Z)—QQ(W,A,Z)”]A, Z]. (D-4)
gefl o xaryy TELTe e

=11(g)
Observe first that E[Q; (7, A, Z) — Ql(7, A, Z)| A, Z] = 0 since @, @ have the same distri-
bution. Also, if R; = 0, then @); = 0. Therefore, by Assumption 2.1, and Assumption 2.3 (ii),
for a given m, Q;(m, A, Z) is a deterministic function of R; (RkeNi, €Dy EDyen, s LkeN;s Lis Eis R,{Em) )
Also, note that if R; = 1, then R£ = 1, for k € N; almost surely. Therefore, (); can be written
as a deterministic function of (Ri, Rien;, €Dy EDyen, » Zken;, Zi, 5i> only, where we can drop

its dependence with Rie ;- The following holds.

e By Assumption 2.3 (ii), p, are i.i.d. and exogenous with respect to (A4, Z,¢);
e By Assumption 2.3 (i) R; are i.i.d. and exogenous;

e Under Assumption 4.1 (A), g;|A, Z are independent for individuals who are not neigh-

bors up to degree M > 2.

3For example, in a fully connected network, the chromatic number is n, where each group only contains
one unit, while in a network with no connection, the chromatic number is one. The size of such cover
(chromatic number) will affect the bound in the statement of the theorem via the maximum degree.



As a result, it directly follows that conditional on A, Z, for any M > 2,
<Ri7 Rk‘GNﬂ €D;» sDkeNi ) ZkENiv Zia Si) L (Rja Rk‘ENj ; SD]' ’ 6DkeNj ; ZkEva Zj’ 8J) QUA{ Ni |A’ Z.
(D.5)
Equation (D.5) implies that Q;(m, A, Z) L (Q;(7, A, Z))jqum n,,|A, Z. Since (Q;)i-y, (Q)i=1|A, Z

have the same joint distribution and are independent, we also have

(Qi(w, A, Z) — Ql(n, A, Z)) L (Qj(w, A,Z) = Q(m, A, Z)) 14, 2. (D.6)

QUA{ N

Note that (Q;)iecar(g) =a (Qf)iecrr(y)|A, Z and are independent (since C)' is deterministic
conditional on A). Therefore, for each group CM(g), by Equation (D.6), for i € CM(g)

(Qi(m A, Z) — Ql(r, A, Z)) L (Qj(m A, Z) - Q(, A, Z)) A, Z.

J#i,5€CHM (g)

We can then bound I7(g) in Equation (D.4) as follows

11(g) :E[sup‘i 3 o [Qi(w,A, Z) — Ql(r, A, Z)H\A,Z}

mett e i€CH ()
1
<E|s - ZQZ aA,Z A’Z +E ZQ; 7AaZ AaZ
[igg e 7ieg;(g) me )M } LEH e iGCz;’Y;(g) e )" ]
1
= 2E| sup ‘— 0:Qi(m, A, Z)’]A,Z )
LEH e iECZn:M(Q) }

The first equality follows from independence of Q; — Q% A, Z within the subset C}(g), and
the fact that Q;, @, have the same distribution. The second inequality follows from the
triangular inequality and @;, Q; having the same joint distribution given A, Z.

Bound on the Rademacher complexity The following holds

L 0. [ 1 o L) o,
ELGH e ie%(g)azQz(mAyz)‘\A,Z} SE[EYJ_?;E o ie%(g)aszef(ﬂ)Yz} A, Z]

:=i(g)

mf(Tr)H |A, Z: —I—IE_ [ilég

1 I;(m)
E[E [ - R
+ o ilelg e Z gj p

e Z o Rim§ (m H \A,Z],

i€CM(g)

::;ir(g) 5:'5;‘;(9)
(D.7)
where Ey ,[-] denotes the conditional expectation with respect to (Y, o) only, given all other
observables and unobservables, and similarly E,[-], with respect to o only. Let C' < oo be a

universal constant. I invoke Lemma D.8 for each element in Equation (D.7) as follows.

e [ invoke Lemma D.8 for i(g) with Y; in lieu of €2; in the statement of Lemma D.8,

with third moment bounded by I'? by Assumption 2.2 (C); and % (”) in lieu of ¢;(+) in
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Lemma D.8, with upper bound U,, = 1/(v6,) (U, as in the statement of Lemma D.8)

by Assumption 2.3 (iii). Since we sum over elements R;1{i € CM(g)} = 1, by Lemma
D.8

i(g)<C L \l VC(IN, Zn:Ril{i € Cp(9)} log(Nn).

ne'Y(Sn i1

ic((ig m;(m) in lieu of g;(+) in the statement
of Lemma D.8, with constant U,, = I'/(yd,) by Assumption 2.2 (C) and Assumption
2.3 (iii), and ©; = 1 in the statement of Lemma D.8. Therefore,

e I invoke Lemma D.8 for ii(g) where we have

IN

ii(g) < C L JVC(H)NnZRil{i60524(9)}10%(/\/”)-

NeYon P

e [invoke Lemma D.8 for 7ii(g) where we have m;() in lieu of g;(-) with constant U,, = T,

and €2; = 1 in the statement of Lemma D.8. Therefore,

iii(g) < CFJ VO(DN, Y Rifi € €1 () log(A%).

n
€ i=1

Summing the terms Collecting the terms together, I obtain

o< Y E[F\anlog(Nn)VC(H)iRil{iGC%(g)}’A,Z],
i=1

ge{l, x(AM)} NeYOn

where the expectation is taken with respect to R = (Ry, -, R,,). I write

3 E[nezén anog(Nn)VC(H)ZRﬂ{iec%(g)}(A,Z}

g€{1,+ x(AM)} i=1
< Z F(S Ny log(N,)VC(TD) ZE[RAA, Z)1{i e CM(g)} (. Jensen’s inequality)
gef1 - x(ary 7O =
=Y Nalos VOl (g) (- E[Ri|A. 2] = ne/n).
ge{1 - x(arny eT0
(D.8)
We have
M _1 M .
(D.8) < x(A )ne’y5n N, log(Nn)VC(H)nex(AM) Z ICM(g)|/n (. concave \/x)
g€{1,~- 7X(A]w)}
_ M r 1 _ L X(AM)Nn log(Nn)VC(H)
= x4 )ne’Yén \/Nn tog(An) VC(Il)me x(AM) B Y0n \/ Te .



In the first inequality in (D.9) I divided and multiplied by x(A*) and used concavity of the
square-root function. In the second equality T used the fact that {CM(g)} contain disjoint
sets, with 3 |Ch'(g)| = n. By Lemma D.2 x(AM) < MAY, completing the proof. O

D.2.1 Theorem 3.1 and Theorem 4.2
I state these two theorems as corollaries of Theorem D.1.
Corollary 1. Theorem 5.1 holds.
Proof. Following Kitagawa and Tetenov (2018),
E[ngﬁn Waz(m) = Waz(me.o)| A, 7]

= E|: Sué) WA,Z(W) - Wn(ﬁ'mﬂea me, 6) =+ Wn(ﬁ'mc,ev me, 6) - WA,Z(ﬁ'mC,e)
mell,

|

< E[ sup WA,Z(T") - Wn<777 mcv 6) + Wn(ﬁ'mc,ev mc, e) - WA,Z(ﬁ'mC,eC)
ﬂ'EHn

A,Z}.

We have (D.10) < E[z sup,er, [Waz(r) — Wn(ﬂ,mc,e)wA, Z} < E[z Sup,cry |[Waz(1) —
W, (7, m¢, e)\’A, Z} (. II,, C II). The proof completes by Theorem D.1, with M = 2. O
Corollary 2. Theorem 4.2 holds.

Proof. Following the argument of Corollary 1, and using the fact that 11, C II, it follows

E[ Sul%) Waz(m) —Wa z(7pme)
melly,

A, Z} < Q]E[sup |W,, (7, m€, e°) — WA,Z(W)|‘A, Z}
well

()

+ 2| sup Wi (.1, €) — Wa(m, m, )
mell

(1)

Term (/) is bounded by Theorem D.1. I now study (/I). In particular, (/1) is equal to

s ;@gmégg(y sl )w;R(mz e >)_;6;RZ;<(:>)(Y mi(m))|14,2]
<E[sup|- Y ng; (¥ + mf(m) — m(x) — ) —;ZR”(Z; (¥ —mi(m) |14, 2]

+E[i§§'neZR ( )—mf(ﬂ)>|‘A,Z]

[sup\—ZR (mz f(w))]’A,Z} —i—E[sup]—ZR 77; Ilgg)(Y my )\‘A Z}

well Te i—1 rell Ne ©

+E[sup L ZRZ i(m) (mi(w) - mf(ﬁ))\‘A,Z].

mell Te i1 Ai(ﬂ-)

(D.11)
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I inspect each term in Equation (D.11). Since R; € {0,1}

[sup = Z R; (m, ))\‘A, Z] < E[nl izn;sc},lf Rili(d, s, Z;, |Ni|) — m(d, s, Zi, |N,~\)]‘A, Z]

nell Tle i—1

By Cauchy-Schwarz inequality and the triangular inequality

B[ S sup Rilin(d 5, Ze [Nil) me(d, 5, Zi,|IN))| A, 2]
e i d,s

IN

=1

n
\ 77,7 Z]E R2 \l [ ! Zsup\ﬁ’L(d,s,Zi, |Nl’) - mc(dvsaZi> |Nl|)’2‘AaZ]
e Te i—1 d,s

- [ Zsup|m (d, s, Zi, |Ni|) — me(d, s, Zs, | N3)) 12‘,4 z} (. E[R?] = E[R}] = ne/n).

zl’s

For the second term we have

Li(m

let eg(d7 t) = eC(d’ t? ZkENm RkENp

;|) and similarly for é;(d, t))

(5-mie) 4.2] < 2wy -5 RICES |
=1 ?

SEEDS
mell Ne i—1

éi(m)

<2F’E[ne;R8up|( dD A‘(Cll,t))‘A,Z}<2F’J [ ;supy dt A‘(Cli’t))|2’A,Z}

where in the first inequality I used the fact that Y;, m¢ are uniformly bounded and in the
last inequality I used Cauchy-Schwarz. For the third term in (D.11), it follows similarly

{sup]—ZR,Ai ( i )—mf(w))\‘A,Z]<—E{sup—ZR|(ml f(w))\’A,Z]

mell Ne i—1 mell

J [ ZSUP\( (d,t, Zi, i) = me(d,, 23, [NG)) ) 2[4, 2).

D.2.2 Proof of Theorem 3.2

The proof constructs an appropriate adjacency matrix, matrix of covariates and distribution
of treatments and unobservables to provide the lower bound, taking into account the selection
indicators. Recall the definition of Ep, (4,2 [-] in Theorem 3.2. Let v = VC(II), and recall,
under Assumption 2.3 (i), R; ~j;q Bern(a),a = n./n. Let X; = Z; for expositional
convenience not to keep track of both X, Z;. Let A* € A7, such that A7, = 0 for all ¢ # j.
Let z1,--- , 2, be v points shattered by II, which, since X = R? and IT has VC dimension v
they must exist. Let Z* such that £ Y% 1{Z; = z;} = 2 for all j € {1,--- ,v}. I write

)
sup sup n Ep, sup Wa z(m) — Wa,z(7n ‘A,Z
A€A2,Ze2n D (A, 2)ePn(A2) N2 1o g2 (N,) D (A’Z)[(wen z(m) z( )) }
0.
> sup n Ep, ax z+ sup Wax z«(m) — Was z+ (7 ‘AZA*,Z:Z* 7
Do (A*,2)ePn(A*,2) N2 log!/2(N\},) Dn(A",Z )[<ﬂen () ( )) ]

(D.12)
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where, recall that d,, N, are also a function of A* Z*.

I will focus on Equation (D.12). I will indicate for |A*, Z* the conditioning set |A =
A*, Z = Z*. Because I consider a fully disconnected network, we have 9,, = 1 in Assumption
2.3 (since individuals have no neighbors), and N,, = 2 for adjacency matrix A*. I follow the
proof of Theorem 14.5 in Devroye et al. (2013), and Theorem 2.2 in Kitagawa and Tetenov

(2018), while I also condition on (A*, Z*), and consider random indicators R;.

Treatment assignments and potential outcomes’ distribution Next, I select the
distribution for treatment assignments and potential outcomes. Let D; be a Bernoulli random
variable, independent of observables and unobservables with P(D; = 1) = 1/2. Let b €
{0,1}" be a bit indicator which indexes a distribution D, p(A*, Z*) € P,(A*, Z*). Namely,
I restrict the class of distributions to a finite number of distributions, indexed by b. Denote
Yi(d) = r(d,0,7;,0,¢;), the potential outcome function, where spillovers and number of
connections are equal to zero by construction of A*. Let P(Y;(1) =1/2|Z; = z;) =1/2+n,
P(Yi(1) = -1/2|Z; = z;) = 1/2 —n for b; = 1,57 < v. If b; = 0, instead have P(Y;(1) =
1/21Z; = z;) = 1/2 —n, P(Y;(1) = —1/2|Z; = z;) = 1/2 4 n, where n € [0,1/2] and is
selected at the end of the proof. Consider Y;(0) = 0 almost surely.

Lower bound via Bayes risk I can therefore write the optimal treatment rule as 7} (z;) =
1{b; = 1},j < v, which satisfies the finite VC dimension. I have W4 z«(m,) = 2377 b;
under the distribution D,, . Consider b being a random variable with b; ~;,;4 Bern(1/2)
and independent of observables and unobservables. Denote Ey|-| the expectation with respect

to b (conditional on A*, Z*). For any data-dependent #,,,*

sup  Ep,(ax,z% [WA*,Z* (1) — Was z+(n)| A%, Z*}

Dn(A*,Z*)EPy

> Ep [Epn,b(A*,z*) [WA*,Z*(WE) — Was z+(7n)

A*, Z*}

A% Z*]7 (D.13)

> i%fni ZU:EI, [EDn’b(A*z*) [1{bj ” ﬁ'n(zj)}‘A*, Z*}
j=1

A* Z*].

We can see the minimization in Equation (D.13) as a risk-minimization problem with lower

bound provided by the Bayes risk. I construct a Bayes classifier of the form
Fnz) = 1{P (b; = 1I[(¥ Dis Drew) Ris |, 4%,2") = 1/2} j <.

I can then follow the same steps of Kitagawa and Tetenov (2018), Equation (A.12), (A.13),
with kF = #{z . Zi = 2, RY,D; = 1/2},k; - #{z . Zi = 2, RY,D; = —1/2} for the case

1See e.g., Appendix A.2 in Kitagawa and Tetenov (2018), Page 8.
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of this paper, and Y;D;R; in lieu of Y;D; in the derivation of Kitagawa and Tetenov (2018).
Following (A.12), (A.13), and the equation below (A.13) in Kitagawa and Tetenov (2018)

1nf77 ZEb[ED b (A*,Z* [1{1) # Tn(25) ‘A* Z*}

Tn

A* Z*}

A*,Z*H 1429
a = .
’ 1-2n

n —Ep |:IEDH b(A%,Z%) [\ 2izr—s, 2YiDi Ry
> 0 ) 7 J
v Za
7j=1
Lower bound on the Bayes risk The marginal distribution of Y;(1) (once we integrate
over b), is P(Y;(1) = 1/2|Z*, A*) = P(Y;(1) = —1/2|Z*, A*) = 1/2 similarly to Kitagawa

and Tetenov (2018). By independence, P(D;R; = 1) = /2. We have

Ep EDn,b(A*,Z*) [| ’Z*} =Ep |:EDn,b(A*7Z*) [| Z 2}/@’ A*7 Z*}
7=z iz =z;,R;D;=1
n/v
1
-2 ("/ ) 1= 5| Bk, 5) — k/2],
2 2
(D.14)

where B(k,1/2) is a binomial random variable with parameters (k,1/2). Equation (D.14)

holds because given Z = Z*, there are n/v many observations with Z7 = z;,7 < v by

B(k, k/2\ \/ (B(k.3) k/2> \f It follows
(D.14) < % (”/“> K1 — g)n/v—k\/iz E\/B(nf?%) < \/E[B(n:v, 9l _ %.

Following Kitagawa and Tetenov (2018), equation (A.14) and below, with an in lieu of n

construction of Z*. We can write E

in Kitagawa and Tetenov (2018), it follows that the Bayes risk is bounded from below by
2\/ exp( 2\/_ for am > 16v. Since n. = an, N,, < 2 for A*, the proof completes.

D.2.3 Proof of Theorem 3.3
For the sake of brevity, I will be using the following notation
fi(d,t) = 1{d:Di,t:Ti}, éi(d,t) :€<d,t, ZkENiyRkeNi;Zi7|N’i|>7 rhi(d,t) :m(d,t,Zi,|Ni|>.

Also, let & = Y;—m(D;, T;, Z;, |N;|). With an abuse of notation, I will refer to é;(d, t), m;(d, t)
as the estimated counterpart of é;(d,t),m;(d,t) from Algorithm 3, with arguments (d,t).
Let I;(m), ei(m), m;(m) be defined as in Equation (6), and the beginning of Section 3.1, and
é;(m), m;(m) be defined as in Algorithm 3 (Equation (32)), as a function of the treatment
assignment rule 7 (therefore é;(m) := é;(m(X;), T;(7)) and similarly for 7;(7)). Recall the

13



definitions of K*, F; ,g in Algorithm 3: K* denotes the number of partitions obtained under
Algorithm 3, where we have k € {1,--- , K*} many partitions. Within each partition, we
have j € {1,---,J} folds F/. For each k € {1,--- | K*}, szlF,f never contains two units
that are either neighbors or share a common neighbor. Let R = (Ry,--- , R,).

The argument I present in the current proof applies to any K* obtained from Algorithm
k € {1,---, K*} obtained from Algorithm 3,

including settings with folds F; ,g with one or few units.?

3, and any configurations of folds (F} ). i1

Preliminary decomposition Following the same argument of Corollary 1, since II,, C II,

IE[ sup Wa, z(m) — Wa z(Tm.e)

A, z} < QE[sup (Wi (m,m, ¢) — WA,Z(w)y(A, Z]

well, well
(1)
+ QE[sup |Wy (7,1, €) — Wy (7, m, e)\‘A, Z] .
mell
(I1)

Term (/) is bounded by Theorem D.1. I now study (/1).

(I1) = [fféﬁ - ; (ez ; (1) — 1y (7)) + 5283 + () — mi(w)) ‘|A, z}
- ELeH ;;R&gg; igo(mz(ﬂ — () + Rzéz;;g:; - Rz<2g§ - 1) (1 (m) — mi(ﬂ))‘\A, Z].

The last equality follows after adding and subctracting R; 2™ ( i(m) —my(m)). Tt follows

v e;(m)
1"
> e
Ne
=1

(@) (i2)

(I1) gE[sup

LS R (2T T ) — ()] 14, 7] + 2 sup |
=1

mell

i) iy

éi(m) ei(m

(m) (m)
sup Ri&; ]—i—E[sup R( ) s (1) — (o ’A,Z}.
|:7r€1_[ neiz: '7T neiz: ﬂ. ( l( ) 7,( ))’
(i) s
(D.15)
5 Algorithm 3 estimates ("), 1/é() as zero functions for those units i, assigned to groups k € {1,---, K*}

with few (a finite) number of units. The estimation error for such units contributes directly to the average
error in Equation (D.16). Appendix B.1 show how to control the estimation error in (D.16).
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Bounding (i) Consider () first. We have

1 Zn: Ri({i(”) - Ii(Tr))Ri(mi(ﬂ) —ni(m))|14,2] (. Ri € {0,1})
¢ =1

(i) =E|

eIl I € (77) €; (77)

i <éi(61l,t) B éi(cll,t))g

= | E[Ri/n]E [ZSUP( i(d. ) '(clllﬂf))2

=1 dt

d,t

[N

| —

=
i-

B

9]

o

o]

}JE[ZR sup (mz(d t) - i(d’t)>2‘A’Z]

=1, A, Z} (" Defn of conditional expectation)

J [R:/ne]E [Zsup(mldt mi(d,t))z i:l,A,Z}:\/Rn(A,Z)xBn(A,Z).

=1 dt
(D.16)

Summands in (i7) and (iii), (iv) Next, I show that each summand in (i), (ii7), (¢v) has
a zero conditional expectation, given R, A, Z, for any é®,m® in Algorithm 3.

(77) I start from summands in (iz). I write the expectation of each summand as

E{Riéi(i(w) — Il’(”)))R, A, Z}

éi(m)  ei(m)

E[Ri (r(ﬁ(xi),ﬂ(ﬁ),zi, N, &1) — m,(w)) (If(ﬁ) B I%(w))

E[E|R: (r(n(X), Ti(m), Zi, |Nil 1) = mi() )
A

RiE|(r(n(X:), Ti(x), Zis INil &) = mi(r) ) |4, Z, R| E|
=0
(. Alg 3 and Assumptions 2.3(i, 1)) =0.

(D.17)
The last equality follows from the fact that T;(7) (in Equation (4)) is a deterministic
function of (A, Z), ¢; is independent of é;(m) given (R, Z, A) by Algorithm 3, and ¢; is
conditionally independent of (D;, R;)?_, given A, Z, by Assumption 2.3 (i, ii).

(i13) For (ii1), E[R;&;1;(m)/ei(m)|R, A, Z] = 0 directly by Assumptions 2.3 (i, ii).

(7v) For summands in (iv), we have:

E[Ri(li<7r) 1) () — ma(m))| R, A, 2]
(D.18)

- RiEKIf(”; - 1)’R,A,Z} E[(mi(w) —mi(ﬂ))‘R,A, Z] —0.

15



The first equality follows because m;(7) is independent of (D;, Dyen,) conditional on

(R, A, Z) by Algorithm 3 and Assumption 2.3 (ii).

Bounds for (ii) Using the triangular inequality and the law of iterated expectations, I

write (letting é;(-) be the estimated propensity score function for i)

(v3 <E{ZZE[SHP 7ZR’ Z( 77: _;Eg)

k=1 j=1 mell

eiery () R A Z] |4, 2],
(D.19)

-~

=(M})

where here we also condition on R and the estimated functions é; for units in the fold ¢ € F; ,g )

Next, we bound each component (M) in (D.19). We make the following observations.

(1) (F}) i1, K* are deterministic functions of (R, A) by construction of Algorithm 3.

(2) Foreachi € FY, E[R 52<£ E:; Z W)> )A R, Z, eieF,{(')} = 0 by (D.17) and independence
6

of é._.i(+) with &; (independence follows from Alg 3 and Assumptions 2.3 (i,ii)).

eF]

(3) Conditional on (éing(-), R, A, Z), we have that {Riél-(h(”) () — Ii(ﬂ)} are mutually

é;(m) ei(m)

independent among units in the same fold (i € F), by 2.3 (i,ii), and Alg 3.

Therefore, by (2), and (3) above I can invoke standard symmetrization arguments for centered

independent random variables (see Lemma 6.4.2 in Vershynin, 2018) to bound

(04f) < 28[Bzy [sup |- 2 ok (25 c O m Az o

for (o1, -+, 0,) bei.i.d. exogenous Radamacher random variables (recall that E; ,[-] indicates
that the inner expectation is conditional on everything else except o, €).

I can now directly use Lemma D.8 to bound the right-hand-side of (D.20). Namely, I
invoke Lemma D.8 where ); in the statement of Lemma D.8 is &; in Equation (D.20), g;(-)
Lm) _ M) in Equation (D.20); U, in the statement of Lemma D.8 is

in Lemma D.8 is <é,(ﬂ) e
W in (D.20). Therefore, by Lemma D.8, for a universal constant C' < oo

n

[Sup - Z o, Rié Z( () IZ(W))H < cr anog(Nn)ZRil{i € Flg}VC(H).

mell 7T €; (ﬂ-) Te i=1

6Independence follows from the fact that Uj‘jle ,f does not contain two sampled individuals that are either
neighbors or share a common neighbor. Therefore, we never use information from (D;, Dien,) to estimate
é;(-) for all i : R; = 1. Also, note that the argument holds if, for estimating the propensity score for i, we also

use information from the neighbors of the units in Uﬂ] Wi J \ Fj, () Wwhich have not been sampled, where F ,z @
denotes the fold containing . These units (i.e., non-sampled neighbors of elements in UJ E J \ F}, 3(9) ) cannot
be neighbors of ¢ (with R; = 1) since UJ 1 7 does not contain sampled units with a common neighbor.
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It follows

L & *CVZ VI N log(No) S, Rilfi € FIVO(
;]E[Z; ()[4, 2] < JE[K = e

4.7

(. concavity of /z)

=1

[ Txan < JN log(N, n)zn:RiVC(H)’A, Z} (- K* < x(A?) by Lem D.9)

=1

</ Jx(4?) iT J Ny log(NG) Z E[R;]JVC(IT) (. Jensen’s inequality).

(D.21)

By Assumption 2.3 (i) (D.21) < /Jx(42)CT 4/ A log ). By construction of Algorithm

3, J=0(1). By Lemma D.5, x(A?) < 2N2.

Rademacher complexity bounds for (iii) Since (iii) does not depend on estimators,
the bound for (7i7) follows from the same argument in Theorem D.1. Recall the definitions

of x(A?),C2(g) T used in Theorem D.1. Following the proof of Theorem D.1 (Paragraph

“Symmetrization and proper cover”), I can write

@< Y E[ M[sup)— 3 Rz L : HyA,Z]

ge{l, x(A2)} melle iec2 ()

n% Zzecg(g R, 51[ H directly with Lemma D.8, with &; in
lieu of ; in Lemma D.8 and I;(7)/e;(m) in lieu of g:(+) in Lemma D.8, with upper bound

I can now bound E(,,g[supwen

Un, = 2/(7d,). Following the same argument as in Equation (D.8)

Z E{ [ Z R (7 H|A,Z} F\/T\/N n log (N, VC( )

€1, x(A2)} '

well ieC2 (g

By Lemma D.5, x(A4?%) < 2N?2, for a universal constant ¢ < oo.

Rademacher complexity bounds for (iv) The bound for (iv) follows verbatim as the
bound for (ii), where, here, instead of conditioning on éing as in Equation (D.19), I condition

on M, . This is omitted for space constraints. The proof completes.
k
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D.2.4 Proof of Theorem 4.1

Define W ,(m) = 5" | m<7r(Xi),Ti(7r), Z;, |Nz|> 1{|Ni| < logv(mn)} the trimmed version
of welfare. Following Corollary 1,
E[ sup Waz(m) — Waz(#L)
welly,

< 2K sup [Wi 4 (7) = Wi (7|14, 2] + 2sup [Wh () = Waz(m)|.
mell mell

A, Z} < 2E[sup Waz(m) — W,ﬁr(w))m,z}
mell (D.22)

The bounds for the first component in the right-hand side of Equation (D.22) follows ver-
batim the proof of Theorem D.1, since E[W(7)|A, Z] = W] ,(7), with the difference that

"fn)“!‘l

the overlap constant is 78 under Assumption 2.3 (iii). For the second component,

‘WKZ(W) — Waz(m)| < ;im(ﬂ(xi),n(ﬂ), Zi,INi)) (1= 1{INi| <o, (mn)}). (D.23)

Here, (D.23) = O(% S 1{]]\/1-] > logw(/in)}>, by 2.2 (C) and Holder’s inequality.
D.2.5 Proof of Theorem 4.4

Define W(n) = Ear 2/ [War z(m)] and W(ftpe ) = Ear 2/ [War 2/ (Time )| Tme.e|, where frpe o L
(A’, Z") by assumption. We can write, following similar steps as in Equation (D.10) with
W (m) in lieu of W4 z(7), supeg W(m) = W (fipme ) < 2sup,cp |W(m) — W, (m, m e)|. There-
fore, by taking expectations,

sup I () — E[W (e )] = E[Tsrlelg W (r) — W(frmc,e)} < QE[?EJE W (1) — W, mC, e)|]

=2E [sup Wi (m,mc e) = Waz(m) + Waz(m) —E[Wyr z (TF)]”

mell (D24)

=2E [sup W (m, mC,e) — WAVZ(W)” +2E [sup Wa,z(m) — E[WA/’Z/(F)]H .
well well

(4) (B)

(A) can be bounded using directly Theorem D.1 and the law of iterated expectations.

D.2.6 Proof of Proposition 4.5

To show that Proposition 4.5 I need to show that (i) the VC dimension of II,, is at most
VC(II) up-to a constant factor; (i) overlap holds for any class of policy © € II,,, namely
ei(m) € (70n, 1 — v0,). The rest of the proof then follows verbatim from Theorem 3.1.
First, for (i), note that by Theorem 13.1 in Devroye et al. (2013), the VC dimension of
the classifier 7(x,d) = 7(z)(1 — d) equals the VC dimension of 7(z), namely VC(II). By
Lemma 29.4 in Devroye et al. (2013) it follows that the VC dimension of TI,, equals VC(II).
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Second, for (ii), for 7(x,d) = w(x)(1

—d)+d
P(D;=1Z;,R; =1 if 7(X;) =1
P(Dz‘ﬂXuDi)Zi,Ril){( | ) i m(X)
1

otherwise.

It follows that P(DZ- = #(X,,D)|Z, R = 1) > min{P(D; = 1|Z,,R; = 1),P(D; =
01Zi, Ri = 1)} € (7,1 —~). Similarly, I can show that P(DZ- — #(X,,D;)|Zi, R = 0, R =
1) € (v,1 —») and P(T; = t|Z;,R; = 1, Rken,, Zken,,|Ni|) > 6, almost surely for any
t € T,, under Assumption 2.3 (ii). Intuitively, because I always treat those units also treated
in the experiment, overlap for # € II, is guaranteed, under overlap in the experiment. It
N|), 7 € 1,

satisfies the overlap conditions imposed in Assumption 2.3. Finally, it is easy to show that

follows that the propensity score e;(7) = e(7(X;, D;), T;(7), Zi, Zren,, Rren;,

Lemma 2.1 directly holds also for any 7 € II,,, following verbatim the proof of Lemma 2.1,
reweighting for e;(7). The rest of the proof follows verbatim the one of Theorem 3.1 once we
define the policy as D; + (1 — D;)w(X;), and the outcomes evaluated at the new policy are
r(DiJr(l—Di)w(Xi), T,(r). Zi, |Ni|, gi> with Tj(r) = gn(zkeNi Di+(1-Dy)r(Xy), Zi, |Ni|>.

D.3 Lemmas

Lemma D.2. The following holds: x(A,) < x(AM) < MNM for alln > 1.

Proof of Lemma D.2. The first inequality follows by Definition D.3. The second inequality
follows by Brook’s Theorem (Brooks, 1941), since the maximum degree under A is bounded

Lemma D.3. Fori € {1, --- ,n} consider functions f; : T, — [—=U,,U,| for some U, > 0,
and Tp, C Z. Then for any i € {1,--- ,n},n > 1, f;(t) is 2U,-Lipschitz in t.

Proof of Lemma D.3. For any t,t' € Z, |fi(t) — fi(t)

< 2U, for t # t', by the triangular

inequality. Since 7, C Z is discrete, |f;(t) — fi(t')| < 2U,|t —t|. O
Lemma D.4. For anyi € {1,--- ,n}, let X; € X be an arbitrary random variable and F a
class of uniformly bounded functions with envelope F. Let ;| X1, -+ , X,, be random variables

independently but not necessarily identically distributed, where €; > 0 is a scalar. Assume
that for some u > 0, E[Q?*"|Z] < B, Vi € {1,---,n}. In addition, assume that for any

fized points xt € X", for some V,, > 0, for alln > 1, fOQF \/log </\/l1 (n,f(:z:’f)))dn <V
Let o; be i.i.d Rademacher random wvariables independent of ()", (X;)i-,. Then for a
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constant 0 < Cp < oo that only depend on F and u, for alln > 1

BV,

n .

/ [sup —Zsz ) 1{Q; >w}‘|X1, ,Xn]dwng

fer'in

Proof of Lemma D.4. The proof follows verbatim the proof of Lemma A.5 in Kitagawa and
Tetenov (2019), with two small differences that do not affect the argument of the proof: I
must control the Rademacher complexity using the Dudley’s entropy integral bound (instead
of the VC dimension), and €2; are independent but not necessarily identically distributed
random variables. Given that the argument follows verbatim the one of Lemma A.5 of

Kitagawa and Tetenov (2019), the proof is omitted for space constraints.” ]

Lemma D.5. Toke any k > 2. Let Fi,--- ,F, be classes of bounded functions with VC

dimension v and envelope F' < co. Let

For arbitrary fized points x € X", foranyn > 1,k > 2,0 > 1, fOQF \/log (./\/ll <77, j(m?)))dn <
cpy/klog(k)v for a constant cp < oo that only depends on F.

Proof of Lemma D.5. Without loss of generality let F' > 1 (since if less than one the envelope
is also uniformly bounded by one). Let F_y,(z}) = {fo(z]) + ... + fi(2}), f; € F},7 =
2, ..., k,}. By Devroye et al. (2013), Theorem 29.6, /\/l1<77, 1n($1)) < H?:z /\/l1<77/(k -
1),.7-"](38?)) By Theorem 29.7 in Devroye et al. (2013),

M 2ae) < T i B0 M (e A6D). 02
j=2

By standard properties of covering numbers, for a generic set H, Ni(n,H) < Nao(n, H). Tt
follows (D.25) < H] o My (k—l)F’ ](ﬂf)>./\/lz <2F,F1 (x )> I now apply a uniform entropy
bound for the covering number. By Theorem 2.6.7 of Van Der Vaart and Wellner (1996),

we have that for a universal constant C' < oo (that without loss of generality we can assume

= 2v
C>1), Mg(z(k sty Fi(a 7;)) < C(v + 1)(16¢) @D (%) which implies that
kn—1

log (M (1, Tu(x)) ) < Y log (MQ(QF(;’_D,I( 1)) +1log (Ms (55 FiaD))
j=1

< klog (C(v + 1)(16€)U+1> + k20 log(2CF2(k — 1)/1).

"The reader may refer to a technical note that collects lemmas from past literature available at dviviano.
github.io/projects/note_preliminary lemmas.pdf for details or Appendix E below.
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Since fOQF \/k log <C(v + 1)(166)”""1) + kn2v10g(2CF2(k — 1) /n)dn < cpr/klog(k)v for a

constant ¢z < 0o, the proof completes. O]
We discuss the Ledoux and Talagrand (2011)’s inequality for the case of interest here.

Lemma D.6. For alli € {1,--- ,n}, let ¢; : R — R be such that |¢;(a) — ¢:i(b)| < L|a — b
for all a,b € R, with ¢;(0) = 0, and arbitrary L > 0. Then, for any n > 1,L > 0, any
U, CR" K, C{0,1}", with u = (uy, -+ ,up) € Up, a = (a1, ,ap) € ICp,

1 1 «

iEg[ sup ’n;fnqﬁi(ui)ai

UEUR ,aE,

1 n
} < LEU[ sup ‘* Zaz’ffz'uz‘
uez/{n7()é€’€n n i=1

|-
Proof of Lemma D.6. The proof follows closely the one of Theorem 4.12 in Ledoux and
Talagrand (2011) while dealing with the additional a vector. We provide here the main
argument and refer to Ledoux and Talagrand (2011) for additional details. First, note that
if U,, is unbounded, there will be settings such that the right hand side is infinity and the
result trivially holds. Therefore, let U, be bounded. We aim to show that

E[ sup  arug + 02¢(U2)a2} < E[ sup  aiug + L02U2042] (D.26)
u€Us, o uEU2,a€2

If Equation (D.26), it follows that

E{ sup  a1¢1(ur)or +U2¢(U2)042\U1] < E{ sup  a1¢1(ur)oq +L02U2a2’01]
uEU2 €2 uEU2 €

Because o1¢(uy) simply transforms Uy, and we can iteretively apply this result.

[ first prove Equation (D.26). Define for a,b € {0,1}?, I(u, s, a,b) := %(ulal +CL2¢(U2)) +
%(slbl — b2¢(52)>. I want to show that the right hand side in Equation (D.26) is larger than
I(u,s,a,b) for all u,s € Uy and a,b € {0,1}%. Since I am taking the supremum of I(u, s, a, b)

over u, s,a, b, I can assume without loss of generality (as in Ledoux and Talagrand, 2011)
uray + agd(uz) > s1b1 + bag(s2), s1b1 — bag(s2) > ura1 — azd(uz). (D.27)
I can now define four quantities of interest
q1 = bis1 — bag(s2), @2 = bis1 — Lsaby, q) = ajuy + Lagua, ¢ = ajuy + az¢(uz).

I consider four different cases, similarly to Ledoux and Talagrand (2011) and argue that for
any value of (a1, az, by, by) € {0,1}*, 21(u, s,a,b) = q1 + ¢4 < ¢} + 2.

Case 1 Start from the case agus, soby > 0. We know that ¢(0) = 0, so that |bap(s2)| < Lbyss.
Now assume that agug > bayse. In this case q; — g = Lbass — bap(s9) < Lagus — agp(us) =

4y — gy since |asd(ug) — bap(s2)| < Llasus — bass| = L(asus — byss). To see why this last
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claim holds, note that for as,by = 1, then the results hold by the condition asus > bysso
and Lipschitz continuity. If instead ay = 1,b, = 0, the claim trivially holds. While the case
as = 0,by = 1, then it must be that s, = 0 since we assumed that asus > 0,b350 > 0 and
aguy > bess. Thus ¢i — qo < ¢} — ¢5. If instead bysy > agus, then use —¢ instead of ¢ and
switch the roles of s, u giving a similar proof.

Case 2 Let asus < 0,bysy < 0. The proof is as Case 1, switching the signs where necessary.
Case 3 Let asus > 0,byss < 0. Then asp(us) < Lasus, since ay € {0,1} and by Lipschitz
properties of ¢, —byd(s2) < —byLsy so that asg(ug) — bad(s2) < asLug — baLss.

Case 4 Let asus < 0,bys9 > 0. Then the claim follows symmetrically to Case 3.

The conclusion of the proof follows verbatim the one in Ledoux and Talagrand (2011). [

Lemma D.7. Let I1, I be two function classes, each with VC dimension v, and w : X
{0,1} for any m € ILII". Fori € {1,---,n}, take arbitrary (Xpen,, X;), X; € X,Q; €
R, R; € {0,1}, adjacency matrix A, and functions f; : Z +— [=U,,U,], for a positive
constant U, > 0. Assume that E[|Q|*|(R:)™~,, (X;)",, A] < B, for some B < oo, and
()P (R, (X)), A are independent but not necessarily identically distributed. Let
o1, ,0, beii.d. Rademacher random variables, independent of [(Xi, R;, Qz>n ,A} . Then
for a universal constant cy < 0o, for anyn > 1, v = VC(II) = VC(II') =

ZR fz( Z up Xk)) 1(Xs)o

Proof of Lemma D.7. First, note that since R; € {0,1}, and we take the expectation condi-

Eqo [ sup
m €Il mo €Il

; ] < coUn J vBN; log(N) SR, (D.28)
=1

tional on (R;)™ ,, we can interpret the sum in Equation (D.28) as a sum over elements > " | R;

many elements. Also, note that from Lemma D.3, we have that f;(t) is 2U,-Lipschitz in t.

First decomposition First, we add and subtract the value of the function f;(0) at zero.
The left hand side in Equation (D.28) equals

Z Rioi(fi( Py m2(Xe)) = fi(0) + fi(0) ) Qim (X:)
] +E9,0{ sup ‘ZRUJZ 0)Qim (X;)

'L
m €Il

Z Rioi(fi( 32 ma(Xi)) = £(0))9im (Xs)

keN;

Egﬁ[ sup
T EH mo€Il’

J

cEa| mp
71 €Il moell’

(1) (2)

(D.29)
First, I bound (1). I write
(1) = Ea, | swp_ ZRaz(ﬁ(Zm Xp)) = £i(0) ) €lsign(2:)mi ()|
e (D.30)
—Eos| sw ZR 5 (fi( D0 m(Xi)) = Fi(0))ulm (X))

!
w1 €ll,maell kEN;
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where &; = sign(§2;)o; which are i.i.d. Rademacher random variables independent of (€2;, X;, R;)?_,, A,

since P(6; = 1|Q2) = P(o;sign(§;) = 1|2) = 1/2. Using the fact that |Q;| > 0, I have

ZR UZ(fz< Z m(Xw) - f(O)) /Ooo {|Q4] > widwm (X;)

z

<Bos[ sw [T )ZRi&i(fi(szm))—f@-<o>)1{|ﬂi|>w}m<xi>

m €ll,ma€ll’ JO

g/oooﬂ«:w[ sup )gRaz(fz<Z7r2(Xk)>—fi(O))l{\Qi]>w}7r1(X,-)

m €Il eIl

(D.30) = Eq s [ sup
m €Il mo €Il

|
|

[ .

’L

(D.31)
Next, I use the law of iterated expectation to first take the expectation over & (conditional

on ) and then take the expectation over €. I also divide and multiplied by U,. I obtain

(D.31) < Un/o EoEs | sup | ZR Gt ( i Z ma(X2)) — £:0)) 1{I9] > whmi ()| o
m Ell,mo e N,
(D.32)

1

Lipschitz property Let ¢;(t) = T L (fi(t)— £:(0)). Here, ¢; is Lipschitz in ¢, with Lipschitz
constant equal to 1. In addition, ¢;(0) = 0. By Lemma D.6®,

Es [melsIuwI;eH’ ZR i ( (%:V Trz(Xk)) - fi(O)) [ > whm (X)) }
- (D.33)
< 2E; [ 1§Iup . ZR 0’1( Z T Xk))l{]Qz\ > wim(X5) ]
melme kEN;

I can therefore write

n

(D.32) < 2U, /000 EQ,&[ sup ZRi&i< Z WQ(Xk))l{\Qi] > wim (X5)

1 €Il €Il i—1 kEN;

[ .

Function reparametrization [ now consider a reparametrization of the function class.
Define X; € XM = (X;, Xyen,, 0, ,0), where for the entries h > [N;|+1, X™ = (), denot-
ing the h*" entry of X;. Without loss of generality, let w(f)) = 0. Define 7; € II; a function
class of the form ;(X;) = W(Xi(j)),ﬂ e Il for j > 1 and m(X;) = W(Xi(l)),ﬂ e 11, ie.,

equal to 7 applied to the j™ entry of the vector X;. Since this is a trivial reparametrization,

8Conditional on X, A, Q, I invoke Lemma D.6 with (71 (X;)1{|Q;| > w})™, in lieu of (a1, -+ , ) € Ky, C
{0,1}" in the statement of Lemma D.6, since 71 (X;)1{[€%;| > w} is binary. Here (3, m2(Xk))iz; is in
lieu of (w1, -+ ,un) € U, in Lemma D.6. The spaces K,,,U,, in Lemma D.6, here are those defined (given
Q, X, A), by T (X)) {|Q] > w},m € Il and (3_,.cn, m2(Xk))iy, T2 € II', respectively.
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VC(IL;) = VC(II) (= VC(IT') by assumption) for all j € {1,--- ,N,}.? T can write

Un/o Boo[ sw ZR J<k;v (X)) L] > whma ()] s
oo Nn—l
<Ud [ Bas | sw EHM\ZRJZ( R (X)) {194 > i (%) o

Un/ EQO-[ sup ‘ZR Gt (Xi)1{ | > w}Hdw
0 7T€Hn =1

where II,, = {W1<Z§\Q{1 7Tj+1>,71'j ellj,j=1,--- ,Nn}. I now apply Lemma D.5, using
the fact that VC(II;) = VC(II) = VC(IT'), for any j € {1,--- ,N,}. By Lemma D.5,
for any n > 1, the Dudley’s integral of the function class II, is uniformly bounded by

C'\/N,, log(N,)VC(II), for a finite universal constant C. By Lemma D.4, since I am summing

over > i | R; elements (conditional on (Ry,--- , R,)), for a universal constant C' < oo

n

Un/o EQ0-|: sup ‘ZR & (Xi)1{|%| > w}Hdw < C'UHJ BN, VC(II) log(N,,) ZRZ-.

7ell, i=1 i=1

Term (2) Next, I bound the term (2) in Equation (D.29). Similar to (1),

|

n h G 0141 fi(0)€4] /Uy, i
§U/0 Eq, [216111_)[)§R01{|f(0) |/Uy, > win(X;)

} < UnEQ,U[Sup ’ ZR i fz |7 (Xs)

mell

Egp[sup‘ZRazfl )Q(X;)

mell

}dw.

Since IT has finite VC dimension, by Theorem 2.6.7 of Van Der Vaart and Wellner (1996) (the

argument is the same as in Lemma D.5), f02 vV Mi(n, (x}))dn < C'y/VC(II) for a universal

constant C, and for any z7 € X™. Since Eq[|f;(0)%/U,|*] < B (f:(0)/U, € [—1,1]) we can
apply Lemma D.4, with |f;(0)Q;|/U, in lieu of |€;] in Lemma D.4, and obtain

v [ Eﬂa[sup)ZRo—zlﬂfz( Ul /U > whm(X,)

}dw <C', JBVC ZR

for a universal constant C’ < co. The proof completes. O]
The following lemma is a direct corollary of Lemma D.7.

Lemma D.8. Let w € 11, be a function class, with w: X + {0,1}. Fori € {1,--- n}, take
arbitrary (Xgen,, Xi), Xi € X,Q; € R, R; € {0,1}, adjacency matriz A, and functions g;

9See e.g., Theorem 29.4 in Devroye et al. (2013).
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Zx{0,1} — [—U,, U,], for a positive constant U,, > 0. Assume that E[|Q; 3| (R:)™,, (X:)", A] <
B, for some B < oo, and ()" |(R;), (Xi)i1, A are independent but not necessarily
tdentically distributed. Let oq,--- ,0, be i.i.d. Rademacher random variables, independent

of [(Xi, R;, Q,)n 0 A]. Then for a universal constant cy < oo, for anyn > 1

Eq» { sup ‘ Z Rzgz< X&), (Xi)>ai

mell kEN;

} <c0Un¢VC( 1) BN, log(N, ZR (D.34)

Proof of Lemma D.8. By Lemma D.3, g;(t,1), g;(t,0) are 2U,,-Lipschitz in ¢. It follows

e[y 3 5 w050 050)o|

< Eg,a{ilelg‘ZRzgz<ke Xk), 1>7T(X¢)<n i } +EQ’”E§§‘ZRZ%(%N Xk), 0)(1 — m(X3))oi }
" (D.35)

It follows

(D.35) < EQ7O—|: sup }Zngl( o (Xk), >7T1(Xi)0'i
m €Il mo €Il keN;

/]

+EQ,0{ sup ’ZRzgz( 7T2 (Xk), 0)(1 — (X))o
) €llw)ell

]

By Lemma 29.4 in Devroye et al. (2013), the VC dimension of the function class 1 —
m,m € II equals the VC(II). By Lemma D.7 each term in Equation (D.35) is bounded
by CU,\/VC(I1) BN, log(N,) Y7, R;, for a universal constant C' < oo. O

Lemma D.9. Let K* be as in Algorithm 3 (Equation 30). Then K* < x(A?) almost surely.

Proof of Lemma D.9. To prove the claim it suffices to show that a partition such that the
constraints in Equation (30) holds exists, and such a partition has size at most x(A?), for all
possible realizations of R = (Ry,---, R,). As a first step, observe that for fixed K, binary
variables Gz € {0,1},5 € {1,--- ,n},k € {1,--- | K}, with 31 Gjx = 1¥j € {1,--- ,n},

K n K n
Z Z 1{j € N; or N;n N; # ®}Gj,k:Gi7k: = 0 implies Z ZRile{j ¢ Ii}Gj,kGi7k = 0.
k=1 j—1 k=1 j=1

Namely, S5 -1 H{j € Nior Ny N;j # 0}GjxGix = 0 is a stricter constraint than
S S0 RiRj{j € T,}GGiy = 0, in Equation (30), for all Ry, Ry, R; € {0,1}

(because R; is binary). I can therefore bound the solution to the optimization problem in
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Equation (30) as follows

K*<argmin min K
KeZ Gef{0,1)nxK

K n K
such that » > 1{j € N; or NN N; # 0}G;xGip =0, and > Gy = 1Vi.
k=1 j=1 k=1
(D.36)
The right-hand side in Equation (D.36) equals x(A?) by definition of smallest proper cover.
O

D.3.1 Identification

Proof of Lemma 2.1. Let €<7T(Xi),Ti(7T),ZkeN,-,RkeN,-,Zi, |NZ|) = e;(m), L;(m) = {Ti(m) =
T;,m(X;) = D;}. Under Assumption 2.1, I can write

E[R(‘:EZ;Y A, Z] - E[RiiiEZ;r<7r(Xi),ﬂ(7r),ZZ-, \Ni\,gi) A,Z}. (D.37)
Under Assumption 2.3 (i,ii),

(D.37) = E{Rej(g) A, Z} X E[T(W(Xi),Ti(ﬂ’),Zi, |Ni|,si> A, Z].
By Assumption 2.3 (i), E[Ref(g) A, Z} - E[REEEZ; A, Z, (R;) ji Ri = 1” — % 0

Lemma D.10. Let Assumptions 2.1, 2.3 hold. Then
1 < ' HTi(n) = T;,d = D;}
=1 ec<7T(Xi)7Ti<7T)aZkENkaGNiaZia |NZ‘)

(¥e = m*(w(x0), Ti(m). 2, INi]) ) | A, 2]

& LS B[R (X0 D7), 20 1N:)[4.2]) = L SO B[r (030, D). 2 Vi )[4, 2]
©i=1 i=1

1=

if either e = e or (and) Assumption 2.2 (A) holds with m® = m.

Proof of Lemma D.10. Define e§(7) = €€ (W(Xi>7ﬂ(71'), Zyen,, Rien,, Zi, |Ni|),[i(7r) = HTi(m) =
T, m(X;) = D;},m§ = me(n(X;), T;(7), Zi, | N;|). Whenever e® = e, the result directly follows
from Lemma 2.1. Let now m¢ = m and Assumption 2.2 (A) hold. Then (since the indicators

R are independent of € by Assumption 2.2)

[Rel(fg) (Y - mf(w)) \A, Z} —F [RZ- i((?) (r <7T(Xz‘)a Ty(n), Zi, |Ni], gi) _ mi(7r)> ’A, Z}
=E[R i((?) (A, 2| x B[ (r(n(X:), Ti(x), 25, INil 1) — ma() \A, Z] -0,

By Assumption 2.3 (i), = X0, B[ Rmi(m)|A, 2] = £ Xy m(r(X:), Ti(n), Zo|Ni). O
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D.4 Proofs for “Additional extensions”

D.4.1 Proof of Proposition B.1

Define k(i) the partition k € {1,--- , K*} associated with unit ¢ under Algorithm 3 and j(7)
the fold j within partition k(i) associated with ¢ under Algorithm 3. Recall the definition
of ¢7(i) = 1{k(s) = k(7),j(s) # j(i)} is Section B.1. Note that ¢7*(i) are random variables
since they depend on sampled indicators Ry, - , R,. By Lemma D.9, K* < y(A?).

For each partition k, Algorithm 3 creates J folds with the same number of units. I can
write Y 0 Ry¢™(i) > L% S R 1{k(s) = k(z)}J where I take the floor function for cases

where J is not a multiple of the number of sampled units in the partition k(7). We have

% Zn:]E [(1 + Xn: qusg@(z'))*QC’"\Ri — 1,4, Z]
=1 s=1

. . (D.38)
1 J—1 —20m
<= ;E[max {1, ( - ;Rsl{k(s) k;(z)}) }]RZ 1, A, Z}
Worst-case partition Next, I replace the (random) partitions k£ € {1,---, K*} with
worst-case non-random partitions. Denote k(i) € {1,---, x(A%)} the worst-case partition
I J—1¢ ~2m
k() € “STE 1L, ( 222 ST Rl {k(s) = k(i Ri=1,A,7
( ) arg&(i)e{lv"' 7XI(nAa2)){},i€{lv”' ’n} n =1 |:maX { ( J ; {7(8) 7(Z)}) }’ ]
x(A?)
such that k(z) # k(j),Vj € N; or N; N N; # 0, Z k() =k} =1, VYie{l,---,n}.
k=1
(D.39)

Here, k¥(-) always exists by definition of x(A4?%).1° In addition, k% does not depend on the

realized R by construction. I claim that

(D.38) < ;iE[maX{l, (% zn:Rsl{k:w(s) - kw(i)})_%’”}mi =1,4.7]
=1 s=1

J/

(D.40)

'

()
Equation (D.40) holds for two reasons: (i) K* < y(A?) by Lemma D.9; (ii) I can show that

the constraint in Equation (D.39) is a stricter constraint than the constraint in Equation

(30) for any realization of (Ry,---, R,) (see the proof of Lemma D.9 for details).

0Existence is satisfied if a feasible solution to Equation (D.39) exists. One example is the smallest proper
cover C,(A2) as in Definition D.1 for the adjacency matrix A2. This satisfies the constraints in Equation
(D.39) by definition. A proper cover always exists (e.g., if the network is fully connected, x(A?) = n).
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Upper bound on (I) Take any i € {1,--- ,n} such that 1{k"(s) = k*(i)} = 1 for some
s # 1. It follows from Cribari-Neto et al. (2000) (equation at the bottom of Page 274)

(0 < (2w [(14 Y R 6) = K6)) IR =1,4,2] (Ri=1)
Ss#1
()%

(2 s 10k (5) = ke (i)}
(o ne/n=aec(0,1),J =0(1)).

<

1 D.41
- O<(Zs# kv (s) = kw(i)})%ﬂ+1> (D41

2¢m

In the right-hand-side (first equation) we added one since k* (i) = k*(s) for s = i. If instead
there is no s # ¢, such that 1{k*(s) = k¥ (i)} = 1, then trivially (/) = O(1).

Sum over all partitions Summing over all y(A?) partitions, we obtain

(D.40) Z PYERILIUE }E[max{l,<J;12n:Rsl{kw(s):k})_2<mH < O(x(A%)/n)

n

x(4?) x(A?

(’)( ; (2?1 1{k;}(2) = k}>1—2g‘m ((J_Jl)ne)%m) + ( Z (1+ Zl{kw _ QCm)

=1 sF#£i

(B)

where (B) correspond to cases where partitions £“ (i) contain at least two elements (and
bounded as in Equation (D.41))!, and (A) corresponds to partitions with only one element,
whose overall number is at most x(A?) (since there are at most x(A?) many partitions, and
for such partitions w = 1/n). For (B) we write

x(A?) w(i) = -
e

A2) n
+(9(

1{k(7) )i 24’”) (a7 2m < g172m for z > 1, concave z'7%m),
k=1 i=1

2Cm 2 n .
It follows that (B) < XW)(m) + O(x(A?)n=%m) (- Z;‘S} ) Yo HEG) =k} =
n). From D.2, y(A?) < 2N?2, which completes the proof for the conditional mean after simple
rearrangement (since the bound for (A) follows directly from Lemma D.2). The argument

follows verbatim for B, (A4, Z), taking into account 1/§2, and omitted for brevity.

UFor the first component in (A) we sum over all i € {1,---,n} instead of n — 1 elements since the last
term is absorbed in O(1).
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D.4.2 Proof of Proposition B.2

n

Denote E,[-] the expectation conditional on {D =m(X; )} , let R = (R;)",. We have

Ex|r(Si Y Sk 2 [N e:) |4, 2] = B[ (Si(r Z Su(m), Zis INil &)
kEN;

where S;(7) = hy (W(Xi), > e, T(Xk), Zi, [ Nil, Vi>. It follows that Equation (D.42) equals

3 E[r(d s, Zi, N3, &) =d, Y Sp(m) = s,Z,A} xP(Si(w) =d, Y Sp(m) = s‘A,Z,R) .
s€{0,+,|Ni[} kEN; kEN;
(i (i)
Since (&), L (Z, A, (ep,, vy, R;)} ), I can show (i) = E[r(d, 8, Ziy [ Nil, €)|Si = d, ) en, S

j=1
s, Z, A, R} Consider now (ii). Observe that by indepedence and exogeneity of (v;)”

A, Z, R} » (D.42)

j=1

||

(ii)zP(Si(n):d‘A,Z,R)x > IIr(s o uk]A,Z,R).

UL, upty s, Up=8 k=1

Using exogeneity of v;, I have

P(Si(w) - d]A, Z, R) - P(Si —d

Zis INi|, Dy = w(X2), > Di = % (X, Zren,, Z).

kEN; keN;

Similar reasoning also applies to neighbors’ selected treatments, omitted for brevity.

D.4.3 Proof of Proposition B.3

First, we show that E[Wn(w,mc,e)
and similarly L, = L'(Z;, Zxen,,

and number of neighbors of ¢ in the target population. Following Lemma D.10 below, by

AZ, A’,Z’] = Wz (n). Let L; = L(Z, Zren,, |Ni|)
i|). Let T7, Z!,|N;|" be the neighbors’ exposure, covariates

exogeneity of (Ry,---, R,) (Assumption 2.3 (i,ii))
1i(m)

ei(m)

RiE[ ()@—mf(w)) +mf(7r)‘A, Z, Ry, ,Rn} :RiE[r((w(X,-),Ti(rr),Zi,\Ni],si) A,z}

- Rim(W(Xi),Ti(w), 7, |N,-|).

Therefore, it follows that

E[Wa(m,m*,e)|4, 2] = iL m(w(X0), Ti(m), Zi, INi] ) = jLim(mmmmz;,|Ni|'),
=1

The last equality follows by construction of L}, L;. S,(A",Z") C S,(A, Z) guarantees that
there are no individuals in the target population outside the sample population’s support.

Because E[W, (m,m¢,e)|A, Z, A, Z'] = War z(7), the same argument of the proof of
Theorem D.1 holds, with the difference that the Lipschitz constant in the proof of Theorem
D.1 multiplies by [_/A,Z,n-
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