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Abstract

The publication process both determines which research receives the most attention,
and influences the supply of research through its impact on the researcher’s private
incentives. We introduce a framework to study optimal publication decisions when
researchers can choose (i) whether or how to conduct a study and (ii) whether or how
to manipulate the research findings (e.g., via selective reporting or data manipulation).
When manipulation is not possible, but research entails substantial private costs for
the researchers, it may be optimal to incentivize cheaper research designs even if they
are less accurate. When manipulation is possible, it is optimal to publish some manip-
ulated results, as well as results that would have not received attention in the absence
of manipulability. Even if it is possible to deter manipulation, such as by requiring
pre-registered experiments instead of (potentially manipulable) observational studies,
it is suboptimal to do so when experiments entail high research costs.

Our model calibrated to medical studies shows that optimal publication rules taking
the researchers’ best response into account, should increase by about 0.3 the standard
cutoffs for which results are considered “significant”, but also increase substantially
the share of published non-significant findings.

1 Introduction
Publication decisions shape the process of scientific communication. By selecting what to
publish, journals affect which findings receive the most attention and can inform the public
about the state of the world. The design of publication rules has therefore motivated recent
debates on how statistical significance should affect publication when the goal is to direct
attention to the most informative results (e.g., Abadie, 2020; Frankel and Kasy, 2022).
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However, the publication process also affects the supply of research by influencing re-
searcher’s incentives about how to conduct research. Researchers have many degrees of
freedom about how to conduct their research, such as how and where to run an experiment
(e.g., Allcott, 2015; Gechter and Meager, 2022); the size, cost, and effort associated with
the study (e.g., Thompson and Barber, 2000; Grabowski et al., 2002); and which findings to
report from a given study (Brodeur et al., 2020; Elliott et al., 2022). We refer broadly to
their choices about each of these aspects of a study broadly as a research design.

Researcher’s private incentives may influence how they choose their design. Yet, “while
economists assiduously apply incentive theory to the outside world, we use research methods
that rely on the assumption that social scientists are saintly automatons” (Glaeser, 2006).
This raises the questions of when and how researchers’ incentives should impact the design
of publication processes, and, more broadly, the optimal allocation of attention to research.

This paper studies optimal publication decisions when researchers chooses the research
design based on private costs and benefits. We frame this question as a mechanism design
problem: a social planner (principal) optimizes a publication rule, taking into account the
incentives of the researcher (agent). The social planner aims to use the publication process
to allocate the attention of the audience to the most informative research findings.

More concretely, as in Frankel and Kasy (2022) (building in turn on Wald (1950)), we
suppose that research results impact the decisions of an audience who has limits on how
much attention they can devote to research. The social planner seeks to publish results that
are most important for the audience, net of the cost of (or taking into account constraints on)
publishing or attention. Due to attention constraints, not all results will be published, which
leaves the planner with a non-trivial trade-off about which results and designs to publish.
We then introduce a model in which publication decisions affect the supply of research in
the first place (Section 2): given the publication rule, the researcher chooses the design that
maximizes her value for publication (or other attention) net of research costs.

As a concrete example, consider a medical journal seeking to decide whether to publish
results from a clinical study. The journal wants to convey accurate information about the
drug’s efficacy in the study (e.g., DeMaria, 2022; Ana, 2004) and direct the audience’s at-
tention to the most effective drugs. This objective is motivated by scientific practice. For
example, the stated mission of the New England Journal of Medicine is

“to publish the best research and information at the intersection of biomedical
science and clinical practice and to present this information in understandable,
clinically useful formats that inform health care practice and improve patient
outcomes.”

However, researchers may respond in how they conduct their studies through the size, length,
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cost of the studies, composition of the control groups (Thorlund et al., 2020), and—in some
cases—in which specific findings to report (e.g., Riveros et al., 2013; Shinohara et al., 2015).

We draw a dichotomy between researchers’ incentives about (i) whether or how to conduct
a study and (ii) which findings to report (e.g., via data manipulation or selective reporting).

We first focus on (i) and abstract from data manipulation and selective reporting; we
therefore suppose that the research design is observable and verifiable (Section 3). For
example, a researcher could choose between experiments with different mean-squared errors
and costs and, by pre-committing to an analysis plan, truthfully report an unbiased estimate
of a treatment effect. The planner can direct the attention of the audience to any executed
study by publishing it; publication can depend on a study’s design and results.

Returning to our example, after providing a new drug to a treatment group, scien-
tists can evaluate its efficacy by comparing the treatment group to either an experimental
placebo group or using a pre-specified synthetic control group obtained from historical med-
ical records (Popat et al., 2022; Yin et al., 2022). Using a synthetic control group can have
large impact on the supply of medical research and new drugs by decreasing research costs
(Jahanshahi et al., 2021; Food and Drug Administration, 2023; Wong et al., 2014). How-
ever, using a synthetic control group may increase the estimate’s mean-squared error due to
lack of randomization (see Raices Cruz et al., 2022; Rhys Bernard et al., 2024), raising the
question of whether a social planner should allow or incentivize their use. (A closely related
application is choosing between two experiments with different numbers of participants.)

We thus suppose that the publication process affects the supply of research through an
individual rationality constraint: for a researcher to be willing to conduct a study, they must
be compensated with a large enough ex ante publication probability. Without these individ-
ual rationality constraints, the first-best publication decision rule would ignore researchers’
costs and publish only studies conducted with the lowest possible mean-squared error; due
to attention constraints or publication costs, not all such studies would be published. When
the feasible designs are inexpensive for the researcher to conduct, the first-best policy can
be feasibly implemented by the planner; the individual rationality constraint does not bind.
Thus, small research costs do not affect the planning problem.

However, when the research cost of accurate designs is above a tipping point, the first-
best publication rule does not compensate the researcher enough to incentivize them to
choose such a design. As a result, the planner faces a trade-off between providing attention
to results that are not valuable enough to deserve attention, and rewarding the researcher
enough to make them willing to use a costly design in the first place.

This trade-off has implications for which designs the planner should publish. For example,
suppose that clinical studies can be conducted based on either quasiexperiments based on
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synthetic controls, which are less expensive but less informative, or full experiments, which
are costly but more informative. Incentivizing researchers to conduct the costly experiment
would require publishing results from such a study, even when doing so misdirects attention
toward treatments with negligible effects on patients. In this case, the planner may prefer
publishing studies with potentially larger mean-squared error to avoid having to publish too
many results from the experiment; researchers will then choose not to use costly experiments
in equilibrium. This analysis suggests that due to the interaction between attention costs
and supply effects, publishing medical studies with synthetic control groups can be desirable
when it is sufficiently costly for researchers to use experimental control groups.

We next turn in Section 4 to scenarios where the researcher, after observing the study’s
results, can report a biased statistic from such a study. The bias is chosen by the researcher
and unobserved by the planner, but incurs a cost to the researcher that is increasing in the
bias (e.g., capturing reputational costs). The audience is unaware of possible manipulations
of published findings, taking results at face value. We think of this model as a stylized
description of settings with potential data manipulation or selective reporting. For instance,
in the absence of a precise pre-specification, we may be concerned that researchers select a
synthetic control group from medical records based on their observed outcomes.

Each publication rule generates a different degree of manipulation. For example, suppose
that the planner used the publication rule that would be optimal without manipulation—
i.e., publishing if the reported statistic is above a cutoff. Then, researchers whose results
would be close to the cutoff would manipulate their data or analyses to reach the cutoff.1

Publishing substantially manipulated results would incur a substantial loss for the audience.
One approach that has been proposed is to completely deter manipulation. An extreme

form of this approach would be to make publication dependent only on the design, and
not on results.2 However, this approach generally incurs substantial costs by directing the
audience’s attention to results that would not affect their decisions, and is not optimal.

By contrast, we show that the optimal publication rule under manipulability has three
key features. First, it increases the cutoff for which findings always get published compared
to settings without data manipulation. Second, just below this cutoff, it randomizes publica-
tion chances, making the researcher indifferent about whether to manipulating their results.
As a result, with nonzero probability, the planner publishes findings that are not truly valu-
able enough to deserve attention, and would not be published without the possibility of
manipulation. Third, some manipulation does occur in equilibrium.

1This manipulation would lead to bunching at the cutoff, which is consistent with bunching that has been
documented in settings with p-hacking (e.g., Elliott et al., 2022).

2In practice, this approach can be implemented by committing to publication based on pre-analysis plans,
as the Journal of Development Economics and the Journal of Clinical Epidemiology do (among others).
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To gain some intuition for these features of the optimum, consider first the optimal
publication rule without manipulation. The planner can eliminate the researcher’s incentive
to manipulate by publishing results below the cutoff with a positive probability. However,
some results that do not affect the audience’s decision do get published as a result, which
is undesirable in the presence of attention costs or constraints. To counteract this effect, it
then is optimal for the planner to increase the cutoff to guarantee publication.

With a more stringent cutoff, some results that would be published without manipulation
are no longer published with probability one. The planner then encourages researchers with
results in this range to engage in a limited degree of manipulation to increase their publication
chances. The loss from publishing some slightly manipulated studies is second-order relative
to the (first-order) gain from publishing results that do affect the audience’s decisions.

To prove that the optimal publication rule takes the described form, we formulate the
social planner’s problem as a mechanism design problem with “false moral hazard” due to
the researcher choosing a manipulation after learning the true results. The absence of direct
transfers and the inability to reward the researcher with a publication probability above
one make the mechanism design problem effectively one with limited transfers. As a result,
standard methods as in Mirrlees (1971) and Myerson (1981) do not apply. We solve the
mechanism design problem by identifying the precise pattern of binding incentive constraints.

In Section 5, we bring our model to the data and study optimal publication rules un-
der manipulation (p-hacking). Using about 800,000 t-statistics collected across medical and
pharmaceutical journals by Head et al. (2015), we estimate the researcher’s cost of manipu-
lation and other relevant parameters in the model. Estimation of the cost of manipulation
leverages discontinuity in the distribution of the t-statistics at relevant cutoffs such as 2.33.
Using these data, we then compute optimal publication rules taking into account the re-
searcher’s best response.

We find that the threshold at which results should be published with probability one
increases from 2.33 (1.96) for 1% (5%)-α test to 2.63 (2.26). Second, despite this larger
threshold, more results must be published in equilibrium, including “non-significant” re-
sults. Third, the share of results which are published is above 20% for a cost of publication
corresponding to 1%-significance test. This share is substantially larger than what we would
observe under the naive significance test at 1%-level (equal to 4% in the presence of manip-
ulation).

These results provide practical guidance for the optimal rule: the optimal publication
rule should decrease both p-hacking and publication bias in equilibrium than naive α-tests,
but it does not reduce these to zero. For practice, we derive an easy-to-compute “publication
score” that defines relevance of the findings.
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As a final exercise in Section 6 we then combine these two models to ask whether the plan-
ner should mandate researchers to send a costly signal that deters them from manipulating
data. For example, the planner could mandate that researchers run costly experiments that
adhere to pre-analysis plans, rather than also allowing for (cheaper) observational studies.
Without accounting for the effects of making research more costly on the supply of research,
the planner would always require such signals to ensure that results are unbiased (Spiess,
2025; Kasy and Spiess, 2023). For example, the planner would not publish observational
studies if equally informative experiments are feasible, no matter their costs.

However, to ensure that the researcher is actually willing to conduct the experiment,
the planner needs to reward the researcher with enough attention through a high enough
publication probability. With large attention costs (or binding publication constraints), this
makes incentivizing experiments costly enough for the planner, that they prefer to publish
observational studies, even though manipulation may occur. Therefore, taking into account
the supply effects of the publication process, the planner may prefer to drive attention
towards studies whose results may be manipulable, and hence possibly biased.

Related literature. This paper connects to a growing literature that studies economic
models to analyze statistical protocols. In the context of scientific communication, Andrews
and Kasy (2019), Abadie (2020), Andrews and Shapiro (2021), Kitagawa and Vu (2023),
and (most closely related to our paper) Frankel and Kasy (2022) have analyzed how research
findings are or should be reported to inform the public. Our analysis builds on this liter-
ature by introducing a model that incorporates researcher’s incentives and studying how
these incentives shape the optimal design of the optimal publication process. None of these
references account for the researcher’s private incentives in the design of the study.

We connect to a broad literature on statistical decision theory (e.g., Wald, 1950; Savage,
1951; Manski, 2004; Hirano and Porter, 2009; Tetenov, 2012; Kitagawa and Tetenov, 2018),
focusing in particular on settings with private researcher incentives. Other work in this
line includes Chassang et al. (2012), Tetenov (2016), Manski and Tetenov (2016), Banerjee
et al. (2017), Henry and Ottaviani (2019), Banerjee et al. (2020), Di Tillio et al. (2021),
Williams (2021), Bates et al. (2022, 2023), Libgober (2022), Yoder (2022), Kasy and Spiess
(2023), McCloskey and Michaillat (2024), Spiess (2025) and Viviano et al. (2024). Different
from these papers, we analyze settings where the researcher may choose the research design
absent private information, and settings in which the researcher can choose the design and
manipulate reported findings with private information. This allows us to formally study ideas
such as when/whether unsurprising results should be published, and whether manipulation
should occur in equilibrium (Glaeser, 2006).
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In particular, an important distinction from some of these models studying approval
decisions, such as Tetenov (2016), Bates et al. (2022, 2023), and Viviano et al. (2024), is
that these papers assume that researchers truthfully report the statistics sampled from their
study and abstract from questions about data manipulation or optimal design of the ex-
periment studied in this paper, and assume no attention costs. Spiess (2025) and Kasy
and Spiess (2023) study models of scientific communication, without, however, focusing on
optimal publication rules studied here. Different from these references, here we incorporate
the researcher’s costs of the design (and misreporting), which, we show, leads to qualita-
tively different solutions in the amount of misreporting. Di Tillio et al. (2021) study the
different question of selective sampling, and Henry and Ottaviani (2019) study the question
of decisions with continuous and sequential access to the data, different from the question
of selective design choice studied here. McCloskey and Michaillat (2024) and Andrews and
Kasy (2019) propose statistical adjustments for p-hacking or publication bias without al-
lowing researchers to best-respond to changes in such adjustments. Here we study optimal
publication rules in equilibrium, taking into account the researcher’s best response.

Finally, a large empirical and econometric literature has documented several aspects of
the research process, including selective reporting, data manipulation, specification search,
as well as site selection bias and observational studies’ bias (e.g., Allcott, 2015; Gechter and
Meager, 2022; Rosenzweig and Udry, 2020; Elliott et al., 2022; Brodeur et al., 2020; Miguel,
2021; Olken, 2015; Banerjee et al., 2020; Rhys Bernard et al., 2024). Our contribution here
is to provide a formal theoretical model that studies how incentives interact with some of
these choices, shedding light on qualitative aspects of optimal publication rules.

2 Setup
Consider three agents: a researcher, a (representative) audience, and a social planner. The
audience and social planner are interested in learning a parameter θ0 ∈ R. All agents share
a common prior θ0 ∼ N (0, η2), whose mean is normalized to 0 without loss of generality.

A researcher conducts a study to inform the audience about θ0. A study is summarized
by (X,∆), where ∆ denotes the design and

X(∆)|θ0 ∼ N
(
θ0 + β∆, S

2
∆

)
(1)

the results. Here, β∆ and S2
∆ are the average bias, and variance, of design ∆, respectively.

If a study is conducted, it will be evaluated according to a publication rule p(X,∆) with
values in [0, 1]. Here, p(X,∆) represents the probability of publishing the study, which is
assumed to be a Borel measurable function of (X,∆).

7



Conditional on publication, the audience forms posterior beliefs about θ0 using Bayes’
Rule assuming β∆ = 0. Conditional on non-publication, the audience’s posterior mean
equals its prior mean (zero), as would arise from Bayes’ Rule with p(·) symmetric in X and
β∆ symmetric around 0. Based on these beliefs, the audience takes an action to minimize
mean-squared distance from θ0; thus, the audience’s action a⋆p(X,∆) is the posterior mean

a⋆p(X,∆) =


Xη2

S2
∆+η2

if the study is published

0 otherwise
.

Given results X = X(∆) for a design ∆, and a parameter θ0, the planner incurs a loss

Lp(X,∆, θ0) = Ep

[(
θ0 − a⋆p(X,∆)

)2]− cpp(X,∆), (2)

where Ep denotes expectation with respect to any stochasticity in the publication decision
rule. Thus, the planner minimizes the expected loss of the audience, net of a cost of publica-
tion or attention. The quantity cp captures the publication or attention costs or constraints.

Given a design ∆, a publication rule p, and results X, the researcher’s expected payoff is

vp(X,∆) = p(X,∆)− C∆ (3)

where C∆ ≤ 1 is the researcher’s cost of executing design ∆.3 (Here, we normalize the value of
publication to 1.) As is standard, whenever the researcher is indifferent between two designs,
we implicitly assume she chooses the design that minimizes the planner’s expected loss.

3 Publication rules under verifiable designs
This section studies optimal publication rules when the planner can observe the research
design, and condition publication on it. We define a design ∆ unbiased on average if β∆ = 0,
and focus on such designs for simplicity in this section (and defer designs that are not
unbiased on average to the following section).

Our analysis proceeds in three steps. We first characterize the optimal publication rule
subject to the constraint of incentivizing the researcher to implement a particular design ∆.
We then characterize which designs are worth incentivizing relative to an outside option.
Last, we characterize the optimal publication rule that chooses between multiple designs.

3We assume C∆ ≤ 1 simply to rule out trivial cases in which design ∆ is never chosen by the researcher.
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Design Experiment Evaluation Audience

∆ X ∼ N (θ0, S∆) p(X,∆) a⋆(X,∆)

Figure 1: Illustration of the variables in the model under observable and verifiable designs.
First, researchers pre-specify the population of interest. Second, they run an experiment and
draw a statistic X. Finally, a social planner evaluates the experiment based on a decision
rule p(X,∆) ∈ [0, 1]. Finally, the audience forms a posterior about the estimand of interest.

3.1 Preliminary analysis for implementing a particular design

As a first step, we characterize the constrained optimal publication when the planner must
make implementing a particular design ∆ individually rational for the researcher, i.e., when
the planner must guarantee that the researcher always conducts the study.

Definition 1. A constrained optimal publication rule for a design ∆ is a publication rule p⋆∆
that minimizes E [Lp(X(∆),∆, θ0)] subject to E[vp(X(∆),∆)] ≥ 0.

Intuitively, a constrained publication rule is a publication rule that always guarantees
that research is conducted. Our first result shows that the constrained optimal publication
rule then takes a threshold form, where the threshold t⋆∆ for publication depends on the
prior, the mean squared error and research cost of the design ∆, and the publication cost.

Proposition 1 (Constrained optimal publication rule). If ∆ is unbiased on average, then a
constrained optimal publication rule for ∆ is the threshold rule p⋆∆(X) = 1 {|X| ≥ t⋆∆}, where

t⋆∆ = min

{
S2
∆ + η2

η2
√
cp,

∣∣Φ−1(C∆/2)
∣∣√S2

∆ + η2
}
.

Here, we write Φ for the cumulative distribution function of a standard normal.
The proof is in Appendix B.1. To understand the intuition behind Proposition 1, first

suppose that the research cost is C∆ = 0, so there is no individual rationality constraint for
the researcher. Then, as in Frankel and Kasy (2022), as the planner’s publication cost cp is
nonzero, the planner will publish results that move the audience’s optimal action enough to
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justify the attention/publication costs cp: i.e., results |X| ≥ γ⋆
∆, where4

γ⋆
∆ =

S2
∆ + η2

η2
√
cp.

When this cutoff rule guarantees an ex ante publication probability of at least C∆, the
individual rationality constraint does not bind. In this case, we say the design is cheap.

Definition 2. Let ∆ be a design that is unbiased on average. Design ∆ is cheap if C∆ <

P (|X(∆)| ≥ γ⋆
∆) and expensive otherwise.

Note that higher publication costs cp, and lower prior variances η2, both raise the thresh-
old γ⋆

∆ and hence make designs more likely to be expensive. Whether a design is cheap
depends on how informative it is (relative to publication or attention costs).

For example, if we take an experiment with unit variance (e.g., X(∆) denotes the stan-
dard t-test), and further approximates 1/η2 ≈ 0 as for a diffuse prior, P (|X(∆)| ≥ γ⋆

∆) = 5%

for standard t-tests with 5% size control. In this case, cheap experiments corresponds to
C∆ < 5%, where C∆ captures costs to benefit ratio of publications.

For expensive designs, the cutoff rule from Frankel and Kasy (2022) does not provide
a large enough ex ante publication probability to entice the researcher to conduct research
in the first place. Hence, the planner needs to commit to publishing more results in order
to satisfy the researcher’s individual rationality constraint. It is best for the planner to
publish results that move the audience’s action the most, even if these results do not move
the audience’s action enough to justify the attention cost cp. Hence, the planner sets a cutoff
that ensures an ex ante publication chance of C∆—i.e., a cutoff of

∣∣Φ−1(C∆/2)
∣∣√S2

∆ + η2.

This second cutoff is below γ⋆
∆ for (and only for) expensive designs, and is the optimal

cutoff for such designs. Thus, if research costs are large enough that the implemented
design is expensive, the researcher’s incentives play a central role in determining the optimal
publication rule, unlike in Frankel and Kasy (2022): the publication process should become
less stringent as research becomes more costly.

The following corollary summarizes and formalizes the preceding discussion.

4Our framework directly extends to the case in which θ0 ∼ N (µ, η2) for a prior mean µ. Here, µ is the
audience’s action in the absence of publication. In this case, the optimal constrained publication rule takes
the form |X − µ| ≥ t⋆∆ for the same threshold t⋆∆ as in Proposition 1. Therefore, as in Frankel and Kasy
(2022), one should interpret surprising results as ones that move the audience away from its default action.
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Corollary 1. (a) If ∆ is a cheap design, then the cutoff t⋆∆ for a constrained optimal
publication rule is t⋆∆ = γ⋆

∆.

(b) If ∆ is an expensive design, then t⋆∆ = |Φ−1(C∆/2)|
√

S2
∆ + η2 is the cutoff for a

constrained optimal publication rule.

3.2 Which designs are ever worth incentivizing

As a second step building up towards the main results of this section, we study when a
design is ever worth incentivizing, relative to the outside option of no study (i.e., relative to
not making it individually rational for the researcher to conduct research with design ∆).

Let L⋆
∆ = E

[
Lp⋆∆

(X(∆),∆, θ0)
]

denote the optimal expected loss for the planner once
implementing design ∆. (Here p⋆∆ is a constrained optimal publication rule for ∆.) The
expected loss if no research is published is the prior variance η2. Comparing these two
quantities determines whether a design is worth incentivizing in the first place.

Definition 3. A design ∆ is worthwhile if L⋆
∆ ≤ η2.

We next characterize which designs are worthwhile. If a design is cheap, then the planner
can selectively publish only results that move the audience’s beliefs enough to justify the
publication or attention cost. Thus, the ex post loss from incentivizing the design (under the
constrained optimal publication rule) is always lower than η2, and similarly its ex ante loss.

Proposition 2 (When are cheap designs worthwhile?). Every cheap design ∆ is worthwhile.

The proof is in Appendix B.2. Whereas cheap design are always worthwhile (regardless of
their cost), for expensive designs, the situation is more delicate. Incentivizing the researcher
to implement a design requires committing to publish results that the planner would ex post
prefer not to publish. When attention costs cp are large enough, the costs of publishing these
marginal results outweigh the benefits of publishing surprising results. How large cp needs
to be for this to occur depends on the design’s cost and variance.

To formalize this intuition, it will be convenient to express our results in terms of the
difference between the posterior and prior variances conditional on publication of the results
of a design ∆, which we denote by

PostVarRed(∆) := η2 − S2
∆η

2

S2
∆ + η2

=
η4

S2
∆ + η2

.

This quantity is a measure of the informativeness of a design: it represents how much learning
the results of the design improves the expected utility of a Bayesian audience with L2 loss.

Note that PostVarRed(∆) is increasing in η2 and decreasing in S2
∆.
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Proposition 3 (When are expensive designs worthwhile?). Let ∆ be a design that is expen-
sive and unbiased on average.

(a) If PostVarRed(∆) ≥ C∆cp +
π
6
η2(1− C∆)

3, then ∆ is worthwhile.

(b) If PostVarRed(∆) < C∆cp, then ∆ is not worthwhile.

The proof is in Appendix B.4. To understand this result, in the case of large research
costs, suppose that C∆ ≈ 1. A design is worthwhile only if the posterior variance reduction
exceeds the product of the attention and research cost (up to a small remainder).5 A design
instead is not worthwhile if the posterior variance reduction relative to the cost of the design
is smaller than the publication cost. That is, as C∆ or cp increase, the posterior variance
reduction must increase proportionally for the design to be worthwhile.

Example 1. Consider a design ∆ that is unbiased on average, and suppose C∆ = cv
S2
∆
+cf , for

a variable cost cv and fixed cost cf . If η2 > cpcf and S2
∆ > cpcv

η2−cpcf
, then ∆ is not worthwhile.

3.3 Choosing which design to incentivize

We next study the optimal publication rule when there is more than one possible design.
Without loss of generality, we suppose that both designs are worthwhile, and that the one
with a lower mean squared error has a higher research cost, so the planner faces a non-trivial
problem about which design to incentivize.

Assumption 1. Researchers can choose between two designs E,O that are unbiased on
average and worthwhile. The designs have mean squared errors S2

E < S2
O and costs CE > CO.

We think of ∆ = E as a possibly expensive experiment and ∆ = O as a lower-cost
experiment (or, in some cases observational study). To understand this case, let us return
to our example of the choice of control in a clinical trial from the introduction. Here, ∆ = E

represents a possibly expensive (large) medical experiment with a treatment and placebo
control group, and ∆ = O represents a lower-cost medical study such as a clinical trial with
a smaller sample size or with a pre-specified synthetic control group. Design O has smaller
cost, since under that design, researchers have to recruit fewer participants. For simplicity,
we suppose that the bias of both studies E and O is unknown with mean zero; as we discuss
below, we can then capture the bias as part of the mean-squared error.

Example 2 (Low-cost and costly experiment). Suppose that E corresponds to an experi-
ment with costly implementation CE, where O is an experiment with larger variance (fewer

5Proposition 3 is sharp up to the term π
6 η

2(1−C∆)
3, and we provide explicit expressions in the Appendix.
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participants), but smaller cost of implementation. In this case, we have E[X(E)|θ0] =

E[X(O)|θ0] = θ0, but the two experiments may have different costs (and variances).

Example 3 (Experiment versus pre-specified synthetic control group). Let X(E) = θ0 +

εE, X(O) = θ0 + bO + εO, where εE ∼ N (0, S2
E) denote the estimation noise from an ex-

periment, εO ∼ N (0, σ2
O) denotes the idiosyncratic noise from an observational study and

bO|εO ∼ N (0, σ2
B) denotes the observational study’s random effect which capture unobserved

bias drawn from a fixed (Gaussian) distribution. For example, Rhys Bernard et al. (2024)
empirically investigates the distribution of bO through a meta-analysis, where σ2

B captures the
impact of the random bias in statistics’ distribution.6 We then have that X(O) ∼ N (θ0, S

2
O),

where the mean-squared error S2
O = σ2

O + σ2
B includes both sampling uncertainty σ2

O and
irreducible error σ2

B arising the variance of the bias.

We next use Proposition 1 to study the optimal choice between the two designs. Because
∆ is observable by the planner (and verifiable as part of the publication process), the planner
can incentivize their preferred design by setting

p⋆(X,∆) = 1{∆ = ∆planner}p⋆∆(X) where ∆planner ∈ argmin
∆∈{E,O}

L⋆
∆. (4)

For instance, the planner may only accept experiments with a minimum level of precision.
It is immediate that p⋆(X,∆) minimizes the planner’s expected loss. We therefore study the
optimal design choice by comparing the minimized loss of the social planner when imple-
menting the experiment versus implementing the observational study. More generally, we
can use similar logic to compare the effectiveness of any two designs.

Definition 4. Design ∆ is planner-preferred to design ∆′ if L⋆
∆ < L⋆

∆′ .

It is immediate that if a design is planner-preferred to a worthwhile design ∆′, then ∆ is
worthwhile. In particular, Proposition 2 implies that if a design ∆ is planner-preferred to a
cheap, unbiased design ∆′, then ∆ is worthwhile.

If the more precise experiment E is cheap, then its higher research cost is irrelevant to
the planner. Therefore, the experiment is planner-preferred to O.

Proposition 4. Under Assumption 1, if E is cheap, then E is planner-preferred to O.

The proof is in Appendix B.5. This result implies that it suffices to compare the mean-
squared error of two cheap studies to select the planner preferred.

6Whenever bO has non zero expectation we can think of X recentered by its expectation, that can be
learned through meta-analyses (see, e.g., Rhys Bernard et al. (2024)).
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When the experiment E is expensive, the situation is more delicate. Implementing E

requires committing to publish more results, which may be costly for a planner. When
the publication or attention costs cp are large enough, the costs of publishing more results
outweighs the benefits of a more precise design.

Proposition 5. Under Assumption 1, if E,O are expensive, then there exists a threshold
c⋆p(E,O, η) > 0 such that E is planner-preferred to O if and only if cp < c⋆p(E,O, η), where

c⋆p(E,O, η) =
PostVarRed(E)− PostVarRed(O)

CE − CO

− η2
O
(
(1− CE)

3
)
−O

(
(1− CO)

3
)

CE − CO

.

The proof is in Appendix B.6. Proposition 5 shows that, assuming both E and O have
high research costs ((1− CO)

3 ≈ 0), it suffices to compare

PostVarRed(E)− PostVarRed(O) ≥ (CE − CO)cp (5)

to choose between a more precise and more expensive experiment E or a less precise design O.
That is, we must compare the difference in the posterior variance reduction to the difference
in costs, adjusted by the attention cost cp. A larger cp shifts the preference of the planner
towards less costly designs. The following theorem formalizes these intuitions.

Theorem 1 (Comparing two designs). Under Assumption 1, suppose that E,O is expensive.

(a) If PostVarRed(E)− PostVarRed(O) ≥
(
1− CO

CE

)
cp, then E is planner-preferred to O.

(b) If PostVarRed(E)−PostVarRed(O) ≤
(
CE−1+2CO

3

)
cp, then O is planner-preferred to E.

If instead O is cheap, then (a) and (b) hold with P (|X(O)| ≥ γ⋆
O) in lieu of CO.

The proof is in Appendix B.7. Intuitively the comparison between two studies must
depend on the posterior variance reduction of each study (which itself depends on their
“quality” captured through their mean-squared error) and the costs of each study.

As the cost of attention cp increases, the planner’s preference shifts from a more accurate
design to a less accurate design with a smaller cost. This is because, for costly studies, the
planner must internalize not only the effect of the mean-squared error on the audience’s loss
function, but also the research cost associated with the study. Whenever she can publish
fewer results (cp is larger), more costly experiments impose more stringent constraints on
the publication rules, making those undesiderable for the planner. This is suggestive that
medical studies with synthetic control groups may be preferred over placebo groups when
the cost of the placebo group is sufficiently large.
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Figure 2: Comparison of two designs. The left hand side makes the comparison using the
approximation in Equation (5) with E being twice as expensive than O. On the y-axis
it reports the difference in posterior variance reduction and on the x-axis reports the cost
of attention. As the cost of attention increases, the more costly experiment must lead to
larger posterior variance reduction for this to be published. The right-hand-side reports
different choices using the exact expression for L⋆

∆. The right-hand-side figure reports on the
x-axis the cost of an expensive experiment with no variance (S2

E = 0), and on the y-axis the
rescaled squared error S2

O/η
2 of a cheap design (e.g., placebo study or cheaper experiment)

using the exact expression. The red line denotes the frontier of values for cost of publication
cp/η

2 = 0.5, and the blue lines for the higher cost of publication cp/η
2 = 1. The region above

the blue line denotes the set of values under which an experiment is preferred for a large
cost of publication, and the area above the red line denotes the low cost of publication. The
figure shows that a cheaper design may be preferred over a more expensive experiment, even
if its mean squared error is larger, whenever the experiment E is sufficiently costly. As the
cost of publication increases, the planner prefers more the cheaper design due to the effect
on the supply of research.

Theorem 1 provides bounds (instead of the exact expression) to enhance interpretability.
However, explicit expressions can be obtained directly from our calculations in the Appendix.
Using such expressions, Figure 2 reports the indifference curves between two experiments
with different mean-squared errors and costs. Figure 2 shows how the planner’s preference
shifts towards cheaper (and noisier) designs even when the experiment has no error.

Remark 1 (Explicit recommendation for practice). In Appendix A we use data from dis-
tributions of t-statistics both in economics (Brodeur et al., 2023) and medical studies (Head
et al., 2015) to calibrate the model under a verifiable design (in addition to our main appli-
cation with manipulation in Section 5). The two datasets return similar results. Specifically,
once we calibrate cp to mimic significance threshold at 5% levels, we find that we should
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prefer an expensive study E over a less costly study O whenever

1

S2
E

− 1

S2
O

≥ 1.34(1− CO/CE). (6)

Note that (6) only depends on the relative research costs CO

CE
, so is independent of the absolute

benefits of publication to the researcher (which we have normalized to 1 for simplicity).

4 Publication rules under non-verifiable designs
In this section, we turn to settings where researchers may manipulate the findings through,
e.g., p-hacking. To this end, we investigate optimal publication rules when researchers choose
the research design ∆ using information of the statistics drawn in the experiment. Here, the
design ∆ (and its corresponding bias β∆) are unknown to the social planner but not to the
researcher. Specifically, we consider the following model.

Assumption 2. Consider a class of designs ∆ ∈ R, with β∆ = ∆ known to the researcher
but not verifiable for the planner, and S2

∆ = S2
E. Writing X(∆) = θ0 + β∆ + ε (where

ε|θ0 ∼ N (0, S2
E)), the researcher observes θ0 + ε and chooses ∆ to maximizes her realized

payoff vp(X(∆),∆). Let C∆ = cd|β∆| + C0, where cd < ∞ and C0 < 1. The social planner
chooses p(X) as a function of X only (and not ∆).

We assume that the variance of the residual noise ε is independent of ∆ and equal to S2
E.

Our results will be valid for any S2
E (including S2

E ≈ 0 as in large studies). We interpret this
assumption as stating that standard errors are verifiable as part of the publication process;
we therefore focus on manipulation that introduces unverifiable bias in the reported results.

Figure 3 illustrates the model: the researcher chooses deterministically the bias of the
reported statistic. They, however, pay a cost C∆ increasing in the bias. We think of the
researcher’s action as a stylized description of data manipulation or selective reporting. In
particular, researchers, after looking at the data, can change their specification by, e.g.,
changing the covariates in a regression, winsorizing the data in particular ways, or mak-
ing other design choices functions of the statistics. Our stylized description captures these
features by defining X as the sum of θ0+ ε plus a bias arising from manipulation. The com-
ponent cd|β∆| of the cost C∆ captures reputational or computational costs associated with
the manipulation, assumed to be increasing and linear in the magnitude |β∆| of the bias.
The researcher observes θ0 + ε, and hence, she maximizes her realized utility conditional on
the observed statistics when choosing ∆.
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| | | |

Statistic Manipulation Evaluation Audience

X ′ = θ0 + ε X = X ′ + β∆ p(X) a⋆(X)

Figure 3: Illustration of the variables in the model. First, researchers observe the vector
of statistics. They then manipulate the design by introducing a bias into the statistics and
maximize their private utility. The social planner does not observe the bias, and evaluates
the study based on a publication function p(X) that only depends on the statistics X.

As we discuss in Section 2, the audience (but not the planner) is unaware of the possibility
that published findings may have some data manipulation.

4.1 Optimal publication rule under manipulation

The planner cannot observe or verify β∆, knows S2
E, and minimizes expected loss over (θ0, ε)

taking into account the researcher’s (endogeneous) incentives to manipulate their results.
That is, we define an optimal publication rule as

p⋆ ∈ argmax
p∈P

EX,θ0

[
Lp(X(∆⋆

p),∆
⋆
p, θ0)

]
with ∆⋆

p ∈ argmax
∆

vp(X(∆),∆), (7)

where P is the set of all Borel measurable functions p(X,∆) constant in ∆ (i.e., do not
depend on the design), which we write without loss as p(X) (note that p may implicitly
depend on S2

E). Here, X satisfies Assumption 2 and ∆⋆
p denotes the optimal researcher’s

response. The publication rule only depends on X but not on ∆, as this is chosen privately
by the researcher. Before introducing our next theorem we introduce the following definition.

Definition 5. A linearly smoothed cutoff rule with cutoff X⋆ and slope m is defined by

pX⋆,m(X) =


0 if |X| ≤ X⋆ − 1

m

1−m(X⋆ − |X|) if X⋆ − 1
m

< |X| < X⋆

1 if |X| ≥ X⋆

.

A linearly smoothed cutoff rule considered here is a deterministic publication rule above
and below thresholds (X⋆ − 1

m
, X⋆) for given m and it randomizes the publication chances
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between these two values, with publication probability increasing in the value of the reported
statistic |X|. The special case of slope m = ∞ and threshold X⋆ = γ⋆

E =
S2
E+η2

η2
√
cp.

corresponds to a publication rule in Frankel and Kasy (2022), i.e., a publication rule for
cheap experiments without manipulation.

We next characterize the optimal publication probability in contexts with manipulation.

Theorem 2 (Optimal publication rule under non-verifiable designs). Under Assumption 2:

(a) There exists a cutoff X⋆ ∈
(
γ⋆
E, γ

⋆
E + 1−C0

cd

)
such that the linearly smoothed cutoff rule

pX⋆,cd is optimal.

(b) For each optimal publication rule p, there exists X⋆ ∈
(
γ⋆
E, γ

⋆
E + 1−C0

cd

)
such that

p⋆(X) = pX⋆,cd(X) (resp. p⋆(X) ≤ C0) for almost all X ≥ 0 with pX⋆,cd(X) > C0

(resp. pX⋆,cd(X) ≤ C0).

The proof is in Appendix C.1. Theorem 2 characterizes the optimal publication rule
under manipulation. The rule is a linearly smoothed cutoff rule that: (i) does not publish
results below a certain cutoff X⋆ − 1

cd
; (ii) randomizes whenever X is above the X⋆ − 1

cd
but

below X⋆; and (iii) publishes with probability 1 for results X ≥ X⋆. Although the optimal
cutoff X⋆ does not admit a simple closed-form expression, it can be computed numerically
as we show in Figure 4.

4.2 Interpretation and implications for published findings

To gain further intuition about the optimal publication rule in Theorem 2, it is instructive
to compare it with the optimal publication rule for a cheap experiment in Proposition 1. For
ease of exposition, we abstract from fixed research costs and take C0 = 0. Consider first a
scenario in which the social planner ignores manipulation. Then we would observe bunching
around the cutoff to publish γ⋆

E, as researchers with θ0+ ε ∈ (γ⋆
E − 1

cd
, γ⋆

E) would introduce a
bias to publish. Researchers with θ0 + ε < γ⋆

E − 1
cd

would find it nonprofitable to introduce
any bias (as the cost would not compensate the benefits) and therefore would not publish.
The first line of Table 1 and the first two panels of Figure 4 summarize this discussion.

Next, suppose that the planner introduces randomization in the publication rule whenever
X ∈ (γ⋆

E − 1
cd
, γ⋆

E) as in a linearly smoothed cutoff rule with cutoff γ⋆
E. This randomization

makes the researcher indifferent between manipulating and not manipulating the data, at
the cost of publishing some unsurprising results. However, this publication rule is still sub-
optimal as too many unsurprising results are published in the randomization regime. The
second line of Table 1 summarizes this discussion.
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Publication rule Testable observation Published findings Manipulation
Optimal cutoff rule ignoring manipulation Large bunching Only surprising findings are published Large

Add randomization below cutoff No bunching Many unsurprising findings are published None

Optimal (Increase cutoff + randomize below) Some bunching Some unsurprising findings are published Some

Table 1: Comparisons between three different publication rules. The first row corresponds
to naive publication rule that ignores manipulation and chooses the optimal cutoff assuming
no manipulation. In this case we observe large bunching at the cutoff. The second row
corresponds to a publication rules that removes manipulation altogether by introducing
randomization below such a cutoff. This rule is sub-optimal since too many unsurprising
findings get published. The last row corresponds to the optimal publication rule.
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Optimal rule under manipulation

Figure 4: Distribution of |t| = |X+β∆⋆ |√
S2
E+η2

under different publication regimes. In context where
no manipulation is possible (first panel)), we see no bunching on the distribution of |t|. When
instead we consider a naive publication rule that ignores manipulation, we observe a large
bunching around the critical cutoff γ⋆

E (second panel). With the optimal publication regime
under manipulation (third panel), the critical threshold for which findings are published with
probability one is higher, whereas in the neighborhood of X⋆ are published with positive
probability. We observe some bunching at X⋆ although this is less extreme than the one
we observe under the naive rule. We consider as parameters cd = 2, η2 = 2, S2

E = 0 and
cp = 0.5. The first dotted line corresponds to naive optimal cutoff γ⋆

E and the second dotted
line corresponds to the cutoff X⋆ for the optimal rule.

The last step is to increase the threshold X⋆ to lower the loss from publishing unsurprising
results. However, a consequence is that some surprising results are not published.

Proposition 6 (Some unsurprising results are published, and some surprising results are
not). Under Assumption 2, for any optimal publication rule p⋆:

(a) for some values of |θ0 + ε| < γ⋆
E, we have p⋆(X) > C0 but β∆⋆

p⋆
= 0; and
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(b) for some values of |θ0 + ε| > γ⋆
E, we have p⋆(X) < 1.

The proof is in Appendix C.2. Proposition 6 shows that some unsurprising results that
would have not been published without manipulation do get published under the optimal
publication rule with manipulation. This feature is not due to manipulation of these results,
but rather to deter manipulation. It is in stark contrast with the case without manipulation,
as in Frankel and Kasy (2022). Moreover, some surprising results that would have been
published without manipulation do not get published under the optimal publication rule
with manipulation. This is again to deter manipulation.

Given that results are only guaranteed publication if they cross a higher threshold than
γ⋆
E, some manipulation can be beneficial to the planner to increase the publication rate of

surprising findings. Therefore, in the planner’s preferred equilibrium, researchers below the
cutoff X⋆ and above γ⋆

E engage in some manipulation. This form of manipulation is distinct
from the manipulation that researchers would engage in under a (non-smoothed) cutoff rule,
which involves results that should not be published and therefore hurts the planner.

Proposition 7 (Manipulation and bunching in equilibrium). Under Assumption 2, consider
any optimal publication rule, and let X⋆ be as in Theorem 2(b).

(a) for almost all |θ0 + ε| ∈ (γ⋆
E, X

⋆), we have |β∆⋆
p⋆
| > 0; and

(b) there exists ζ > 0 such that |θ0 + ε+ β∆⋆
p⋆
| = X⋆ for almost all |θ0 + ε| ∈ (X⋆ − ζ,X⋆).

The proof is in Appendix C.2. The third line of Table 1 and the third panel of Figure 4
summarize the implications of the proposition.

4.3 Role of fixed experimental costs

As the last exercise, we study the role of fixed costs in the presence of manipulation.

Proposition 8 (Implementation costs). Under the model in Assumption 2, for C0 ≥ 1−cdγ
⋆
E,

the set of optimal cutoffs X⋆ in Theorem 2 is decreasing in C0 in the strong set order.

The proof is in Appendix C.3. Proposition 8 shows that for sufficiently costly studies,
the social planner lowers the cutoff as the fixed cost increases. This result is suggestive that
less surprising results may be published more when the study is sufficiently costly. It differs
from what we found in Theorem 1 in the absence of manipulation, where the planner may
force the researcher to run cheap over expensive studies. Fixed costs imply a lower chance
of manipulation, motivating increasing the chance of publication for such studies.
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5 An empirical application to medical studies: optimal
rules under p-hacking

In this section we study the implications of our model under non-verifiable designs focusing
on applications for medical and pharmaceutical studies. Head et al. (2015) collected p-
values via text-mining the PubMed database across several disciplines. We focus here on the
corresponding (about 800, 000) t-statistics classified as medical and pharmaceutical studies.
Define t := X(∆)− β∆ as the true t-statistics (absent p-hacking) and X(∆) as the observed
t-statistics. For our calibrations, we will assume for simplicity that observed t statistics
are (mostly) representative of results submitted to medical journals (i.e., assuming that any
study will eventually published in some, possibly low rank, medical journal).

We consider the same model as in the main text, where θ ∼ N (0, η2), X(∆)|θ ∼ N (θ, 1),
with X(∆) denoting the estimated effect divided by its standard error, and a⋆p(X,∆) =
η2

η2+1
X. Here, η2 captures any prior uncertainty. Our model depends on parameters (cd, cp, η2),

assuming fixed costs are sunk (and therefore C0 = 0).7 We use the data from Head et al.
(2015) to calibrate the model.

Calibration of cd We calibrate cd as follows: we first note that for many journals, standard
(1, 5, 10% significance) levels may (approximately) correspond to publication rules of the form
p⋆(t) = 1{|t| ≥ qα/2} where qα/2 is the critical Gaussian quantile at given significance level
α. In this case, we would observe a discontinuity of the distribution of X in equilibrium.
Such discontinuity occurs over the interval (qα/2 − 1

cd
, qα/2). We can therefore use the data

to learn the lower end of the discontinuity qα/2 − 1
cd

and therefore learn cd. For instance, we
observe a discontinuity between ∼ 2 and 2.3 (the 1%-α test critical threshold), suggesting a
value of cd ≈ 1

2.3−2
= 3.33 (see e.g., Figure 5, right-hand side).8

Calibration of η2 Manipulation may change the distribution of X around relevant cutoffs
(e.g., 1.96, 2.33). To construct a measure robust to such distributional changes, we take the
95th quantile of the distribution of X, denoted as q̄95. Here, q̄95 = 3.71 far above the critical
value 2.33. Using properties of the Gaussian distribution, η2 ≈ (q̄95/2)

2 − 1 = 2.458.

Calibration of cp We choose cp to mimic critical values we find in practice, since in this
model √cp

1+η2

η2
defines the critical threshold for standard publication rules. Therefore we

7Therefore we should interpret our analysis valid conditional on researchers having conducted the exper-
iment. Our analysis can be extended to non-sunk fixed costs, by using multiple cutoffs in the data (e.g., at
1.96 and 2.33) to learn two parameters C0, cd instead of only cd only.

8A similar value can be obtained if we consider a discontinuity around 10%-significance level.
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choose √
cp

1+η2

η2
∈ {2.33, 1.96}, corresponding to the critical value for 1% and 5%-α tests.

Main takeaways In Figure 5 and Table 2 we collect the distribution of t-statistics X ob-
served in equilibrium under the optimal publication rule alongside the empirical distribution
of t statistics from data in Head et al. (2015). The panels at the top (bottom) reports opti-
mal rules for critical values √cp

1+η2

η2
= 2.33 (1.96), with the dotted line corresponding to the

critical value √
cp

1+η2

η2
. The left-hand side of Figure 5 collects the distribution of t-statistics

reported in papers (without conditioning on those being necessarily published).
The first takeaway is that the optimal publication rule increases the significant cutoff to

X⋆ = 2.63 for 1%-α tests instead of 2.33 and to X⋆ = 2.26 for 5%-α tests. That is, “signifi-
cance level” becomes more stringent, as we interpret significance level as the threshold above
which results will be accepted almost surely. Just below the cutoff, researchers will introduce
some discontinuity due to some p-hacking under the optimal rule. Such discontinuity is also
observed (at different points) in the empirical data, although under the optimal rule is less
pronounced.

The second key takeaway is that the share of published results is significantly larger (in
equilibrium) under the optimal publication rule compared to the threshold rule of the form
1{|X| ≥ √

cp
1+η2

η2
}, see Table 2.9 For instance, under the naive rule 1{|X| ≥ 2.33} (≥ 1.96)

only 4.2% (9.7%) are published (taking into account manipulation). On the other hand,
more than 20% of studies are published under the optimal rule.

Taken together, these results suggest that publication rules in medical journals should in-
crease the share of published findings, but increase the “significance” cutoff at which findings
are published with probability one. This will reduce (although not eliminate) manipulation,
taking into account the researchers’ best response to changes in the publication rule.

In practice, we recommend editors asking for a “significance score”

p⋆(X) =


0 if X < X⋆ − 1

cd

1− cd(X
⋆ − |X|) if X⋆ − 1

cd
≤ |X| ≤ X⋆

1 if X ≥ X⋆

The score equals one if effects are above X⋆, and is proportional to |X| otherwise. Under
our calibration cd = 3.33, and X⋆ = 2.26 for √

cp
1+η2

η2
= 1.96.

9Here we compute the probability of publishing under the naive rule 1{|X| ≥ √
cp

1+η2

η2 } as E[1{|X| ≥
√
cp

1+η2

η2 }] = E[1{|t| ≥ √
cp

1+η2

η2 − 1/cd}] since for X ∈ (
√
cp

1+η2

η2 − 1/cd,
√
cp

1+η2

η2 ) the researcher would
engage in manipulation under the naive rule 1{|X| ≥ √

cp
1+η2

η2 }.
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Figure 5: Simulated statistics under optimal publication rules (left-hand side) and em-
pirical distribution of t-statistics in medical and pharmaceutical studies using data from
Head et al. (2015) (right-hand side). The left-hand side panels report the distribution
of the statistics |X| in equilibrium, under the calibrated optimal publication rule with
cd = 3.33, η2 = 2.458,

√
cp

1+η2

η2
∈ {2.33, 1.96}. The dotted line corresponds to the √

cp
1+η2

η2

critical value.

Table 2: Each row corresponds to different choices of √cp. The second column (titled X⋆)
denotes the threshold at which results are published under the optimal rule with probability
one. The third column reports the share of results published under the optimal publication
rule (in equilibrium). The last column reports the share of published studies in equilibrium
under the naive rule 1{|X| ≥ √

cp}.

cd = 3.33, η2 = 2.458 |X| ≥ X⋆ E[p⋆(X)] E[1{|X| ≥ √
cp

1+η2

η2
}]

(Significance cutoff) (with manipulation) (with manipulation)
√
cp

1+η2

η2
= 2.33 (1%-test) 2.631 0.207 0.042

√
cp

1+η2

η2
= 1.96 (5%-test) 2.261 0.287 0.097
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6 Implications for pre-specified experiments
In this section we study the implications of our results for incentivizing more observational
studies with possible data-manipulation or costly experiments with no data manipulation—
e.g., when enforcing pre-analysis plans. We combine the analyses with and without manip-
ulation from the previous two sections.

Definition 6 (Pre-analysis vs possible manipulation). Consider the following two possible
families of designs, all of which are unbiased on average and have variance S2

E.

(A) Experiment with pre-analysis plan: Researchers cannot manipulate their findings (as
in Section 3), truthfully report X = θ0 + ε, and pay a research cost CE. The social
planner chooses a publication rule p⋆E as in Definition 1 and incurs a loss L⋆

E.

(B) Possible manipulation (observational studies): Assumption 2 holds, so there is a family
of designs ∆ ∈ R. The manipulation cost is cd < ∞, and researchers can manipulate
their findings after observing θ0+ε. The fixed research cost is C0 = 0. The social plan-
ner chooses a publication rule p⋆ as in Equation (7) and incurs corresponding expected
loss L⋆

M = EX,θ0

[
Lp⋆(X(∆⋆

p⋆),∆
⋆
p⋆ , θ0)

]
under the planner’s preferred equilibrium.

Scenario (A) states that the researcher cannot manipulate her findings but pays a fixed
cost CE, interpreted as the cost that guarantees no bias in the study. This setting may
correspond to the cost of conducting an experiment (including time for grant approval,
research assistants, etc.).10 Scenario (B) allows for manipulation of the findings, with the
researcher not required to write a pre-analysis plan. In this case, we assume for simplicity
no fixed costs CE = 0, but possible (reputational) costs associated with manipulation. We
think of (B) as scenarios where an experiment or observational study is already available to
the researcher (and therefore, its cost is sunk).

To simplify notation, we introduce the following quantitative measure of how much loss
the expensiveness of a design entails; this measures is useful for our subsequent analysis.

Definition 7 (Incentive costs). Denote IC(E) = L⋆
E −L⋆

E′ where E ′ is a cheap design with
CE′ = 0 and variance S2

E′ = S2
E. Namely, IC(E) denotes the difference in the planner’s

loss (under the planner’s optimal action) for a design E and the same design (with same
variance) E ′ but no implementation costs CE′ = 0.

It follows that IC(E) measures the costs on the social planner of private research costs CE,
which are a form of incentive costs. Whenever E is a cheap design, IC(E) = 0; otherwise,

10For simplicity, we consider here experiments that are worthwhile.
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IC(E) > 0. Also, note that IC(E) can be readily computed from the expressions in the
Appendix.

Proposition 9 (Value of pre-analysis plan). Under (A) and (B) in Definition 6:

(a) If E is cheap (i.e., IC(E) = 0), then E is planner-preferred to M ;

(b) If IC(E) > 1+2cdSE

c2d
, then M is planner preferred to E.

In Proposition 9, we show that an experiment (with a pre-analysis plan) is preferred over
an observational study with possible manipulation (with no pre-analysis plan) if the cost of
the experiment is sufficiently low.

When the cost of the experiment is high (and therefore IC(E) is large), the trade-off
depends on (i) its cost CE and (ii) the cost of data manipulation cd. Clearly, if cd = 0, then
an experiment with a pre-analysis plan may be preferred. Intuitively, with a low cost of
manipulation, the planner must publish with positive probability a larger set of unsurprising
results, at a possibly large publication cost.

Suppose instead cd < ∞. Then, an observational study with possible manipulation is
preferred for sufficiently high researcher’s cost. This is despite the cost of the experiment
being private and paid by the researcher and not by the planner. This is because, a sufficiently
large of the experiment CE increases the loss of the social planner who must publish results
that would otherwise not publish with low experimentation costs.

Different from (and complementary to) models where either no experimentation or no
reputational costs occur (e.g., Kasy and Spiess, 2023; Spiess, 2025), these results illustrate
trade-offs in the choice of unbiased vs. biased studies. A larger experiment cost may decrease
the supply of research, making the planner prefer possible manipulation.

7 Conclusion
This paper studies how researcher’s incentives shape the optimal design of the scientific
process. Ignoring the researcher’s incentives, it is optimal to publish the most surprising
results (Frankel and Kasy, 2022). When researcher’s incentives matter, we show that optimal
publication rules depend on private costs of research and incentives for research manipulation.

As a first exercise, we show that, in the absence of manipulation, the planner prefers
experiments or observational studies with larger mean-squared error) over sufficiently costly
experiments. In medical studies, a pre-specified synthetic control group obtained from medi-
cal records (Jahanshahi et al., 2021; Food and Drug Administration, 2023) may be preferred
over a sufficiently expensive placebo control group, despite lack of randomization.
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With manipulation, we show that it is optimal to (i) publish some unsurprising results and
(ii) knowlingly allow for manipulation (biased studies) at the margin. Observationally, the
optimal policy would reduce the bunching of the findings (e.g., t-tests) around the publication
cutoff. However, the optimal policy does not completely remove bunching. Even when the
planner can mandate a signal to enforce no manipulation, this may not be her preferred
policy when the signal entails a larger research cost.

Our model disentangles the contribution of design choice and data manipulation to op-
timal publication decisions. Future research should study more complex communication
strategies. For example, in contexts with pre-analysis plans, the planner may allow multiple
signals to decrease the burden on the authors or allow for the publication of non-prespecified
findings. Similarly, researchers may report multiple findings in their study. As we point to
in our results in Section 6, studying more complex action spaces can shed light on alternative
mechanisms relevant to scientific communication.

This paper opens new questions at the intersection of econometrics and mechanism de-
sign. Future research should study the implications of some of these conclusions on empirical
research. Our framework relies on parameters that capture costs and benefits for the re-
searcher. In the absence of manipulation, such parameters can be learned using cost data for
medical trials (e.g., Tetenov, 2016) and field experiments (e.g., Viviano et al., 2024). With
manipulation, and reputational costs associated with it, such parameters may be learned
using information from meta-analyses through the distribution of the submitted findings as
we show in Section 5. Future research should focus on sharping our understanding of the
identification of such parameters.
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A Calibration for a model with verifiable design
In this section we provide a simple calibration for our model with verifiable design. Taking
stock, our model and conclusions in Section 3 depend on key parameters (cp, η2) in addition to
(possibly observable) parameters (S2

∆, C
2
∆). In this section, we illustrate how the parameters

of the model can be calibrated in practice to provide practical recommendations. Define
t∆ := X(∆)

S∆
as the t-statistic commonly reported in academic papers.

Calibration of η2/S2 The first step is to calibrate η2/S2 (as a function of S2). To do so, we
can take the distribution of t statistics across submitted journal articles, so that V(t|θ) = 1

and V(t) = 1+η2/S2. Here η2 captures uncertainty arising from heterogeneity across papers
(e.g., papers having different estimands) as well as prior uncertainty about the parameters.
Under a Gaussian approximation for t ∼ N (0, 1 + η2/S2), we take the 95th quantile of the
distribution of t across papers, denoted as q̄95. The focus on the 95th quantiles may avoid
some manipulation that occurs within the support of the t-statistic as we further describe
and study in Section 4 and Section 5. For instance, using data about submitted papers in
economics collected by Brodeur et al. (2023), we estimate q̄95 = 3.39, so that η2/S2 = 1.87.
Using t-statistics from medical articles collected by Head et al. (2015) as described in Section
5, we find similar q̄95 = 3.71.

Calibration of cp It follows that for t-statistics t∆ (having unit variance conditional on
θ by construction), the critical threshold γ∆ =

√
cp

1+η2

η2
. Motivated by empirical practice,

we set γ∆ = 1.96 as the standard threshold for t-tests with 5% Type I error. Using our
tabulation with η2 = 1.87 for S2 = 1, cp = 1.63 for tests with 5% Type I error.

Implications for design choice Under such calibration, we can write

PostVarRed(∆) =
1.21

S2
∆

.

so that under Proposition 3 an expensive design is not worthwhile if 1
S2
∆
≤ 1.34C∆. Similarly,

under Theorem 1, we prefer an expensive study E over a less costly and precise study O, if

1

S2
E

− 1

S2
O

≥ 1.34(1− CO/CE).

B Proofs omitted from Section 3
Let ϕ denote the probability density function of a standard normal.
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B.1 Proof of Proposition 1

The proof uses the following lemma, which provides a simple decomposition of the social
planner’s loss function conditional on the realized statistic X that we also use in other proofs.

Lemma 1 (Loss function). Let ∆ be a design that is unbiased on average.

E
[
Lp(X(∆),∆, θ0)

∣∣∣X(∆)
]
=

[
cp −

η4

(S2
∆ + η2)2

X(∆)2
]
p(X,∆) + E[θ20|X(∆)]

Proof. The lemma follows directly from the fact that E[θ0|X(∆)] = η2

S2
∆+η2

X(∆).

The individual rationality constraint E[vp(X(∆),∆)] ≥ 0 can be written equivalently as
E[p(X(∆))] ≥ C∆. Note that the objective and constraints are linear in p. Using Lemma 1
and placing a Lagrange multiplier λ ≥ 0 on this constraint, the Lagrangian of the planner’s
problem can be written as

E
[(

cp − λ−
( η2

S2
E + η2

X(∆)
)2
)
p
(
X(∆)

)]
+ λCE + η2

We can solve and obtain pλ(X) = 1{|X| ≥ S2
E+η2

η2

√
cp − λ} as the minimizer of the La-

grangian. As X(∆) ∼ N (0, S2
E +η2)), the individual rationality constraint can be written as

2Φ

(
−

√
cp − λ

√
S2
E + η2

η2

)
≥ CE ⇐⇒ λ ≥ cp −

(
η2√

SE + η2

∣∣Φ−1
(
CE

2

)∣∣)2

.

By complementary slackness, it follows that

λ = max

{
0, cp −

(
η2√

SE + η2

∣∣Φ−1
(
CE

2

)∣∣)2}
.

As we then have

S2
E + η2

η2

√
cp − λ = min

{
S2
∆ + η2

η2
√
cp,

∣∣Φ−1(C∆/2)
∣∣√S2

∆ + η2
}

= t⋆∆,

we have that pλ(X) = p⋆∆(X).
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B.2 Proof of Proposition 2

Since ∆ is cheap, Corollary 1 implies t⋆∆ =
S2
∆+η2

η2
. Proposition 1 and Lemma 1 then imply

L⋆
∆ = E

[(
cp −

η4

(S2
∆ + η2)2

X(∆)2
)
1
{
|X(∆)| ≥ S2

∆ + η2

η2

}]
+ η2 < η2.

B.3 Preliminary Steps for Analysis of General Designs

Our analysis of general designs relies on the following lemma, which provides an exact char-
acterization of the planner’s loss under a threshold rule.

Lemma 2. If ∆ is a design that is unbiased on average, then for any publication rule of the
form p(x) = 1{|x| ≥ t}, we have

E[Lp(X(∆),∆, θ0)] = η2 + P(|X(∆)| ≥ t)cp − PostVarRed(∆)Υ(P(|X(∆)| ≥ t),

where we write Υ(t) = 2Φ−1
(
1− t

2

)
ϕ
(
Φ−1

(
1− t

2

))
+ t.

Proof. Bt Lemma 1, we have

E [Lp(X(∆),∆, θ0)|X(∆)] = E[θ20|X] + cp1
{
|X| ≥ t

}
−
(η2X(∆)

S2
∆ + η2

)2

1
{
|X| ≥ t

}
.

Note that

E
[(η2X(∆)

S2
∆ + η2

)2

1
{
|X(∆)| ≥ t

}]
= E

[(η2X(∆)

S2
∆ + η2

)2
∣∣∣∣ |X(∆)| ≥ t

]
︸ ︷︷ ︸

(I)

P (|X(∆)| ≥ t) .

As X(∆) ∼ N (0, η2 + S2
∆), it follows from the symmetry of the Gaussian distribution and

properties of truncated Gaussian distributions that

(I) = E
[(η2X(∆)

S2
∆ + η2

)2
∣∣∣∣X(∆) ≥ t

]
=

η4

S2
∆ + η2

[
1

P (X(∆) ≥ t)

t⋆∆√
S2
∆ + η2

ϕ
( t√

S2
∆ + η2

)
+ 1

]
.

Taking expectations and using P(|X(∆)| ≥ t) = 2P(X(∆) ≥ t), it follows that

E [Lp(X(∆),∆, θ0)|X(∆)]

= η2 + cpP (|X(∆)| ≥ t)− 2η4

S2
∆ + η2

t⋆∆√
S2
∆ + η2

ϕ
( t√

S2
∆ + η2

)
− η4

S2
∆ + η2

P (|X(∆)| ≥ t)

= η2 + cpP (|X(∆)| ≥ t)− PostVarRed(∆)Υ (P (|X(∆)| ≥ t)) ,
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where the last equality holds as X(∆) ∼ N (0, S2
E + η2).

Using Lemma 2, we can characterize the planner’s optimal loss.

Lemma 3. If ∆ is unbiased on average, then letting Υ be as in Lemma 2, we have

L⋆
∆ =

η2 + C∆cp − PostVarRed(∆)Υ(C∆) if ∆ is expensive

η2 + P(|X(∆)| ≥ γ⋆
∆)cp − PostVarRed(∆)Υ(P(|X(∆)| ≥ γ⋆

∆)) if ∆ is cheap
.

Moreover, L⋆
∆ is strictly decreasing in PostVarRed(∆) and non-decreasing in C∆.

Proof. By Corollary 1, we have P (|X(∆)| ≥ t⋆∆) = P (|X(∆)| ≥ γ⋆
∆) if ∆ is cheap and

P (|X(∆)| ≥ t⋆∆) = C∆ if ∆ is expensive. Hence, the first part of the lemma follows from
Lemma 2 and Proposition 1.

Lemma 2 also implies that for all t ≥ 0, the loss E[L1{|x|≥t}(X(∆),∆, θ0)] is strictly
decreasing in PostVarRed(∆) and non-decreasing in C∆. Proposition 1 also implies that

L⋆
∆ = min

t≥0

{
E[L1{|x|≥t}(X(∆),∆, θ0)]

}
,

and the second part of the lemma follows.

We next provide a few properties of the function Υ that will be used in the proofs.

Lemma 4. Let Υ(t) be defined as in Lemma 3.

(i) Υ(t) is non-decreasing on (0, 1) with derivative Υ′(t) =
[
Φ−1(1− t/2)

]2
.

(ii) 1 ≥ Υ(t) ≥ 1− π
6
(1− t)3 for all 0 < t < 1.

(iii) Υ(t) ≥ 1− 1
3
(1− t)Φ−1

(
1− t

2

)2 for all 0 < t < 1.

Proof. Define z(t) = Φ−1
(
1− t

2

)
, so that Υ(t) = 2z(t)ϕ

(
z(t)

)
+ t. By the chain rule, we have

Υ′(t) = 2z′(t)ϕ
(
z(t)

)
+ 2z(t)ϕ′(z(t))z′(t) + 1.

Recalling that ϕ′(x) = −xϕ(x), we have

Υ′(t) = 2z′(t)ϕ
(
z(t)

)
+ 2z(t)2ϕ

(
z(t)

)
z′(t) + 1 = 2z′(t)ϕ

(
z(t)

)[
1− z(t)2

]
+ 1.

The chain rule also implies that
z′(t) = − 1

2ϕ(z(t))
, (8)
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and it follows that
Υ′(t) = −

[
1− z(t)2

]
+ 1 = z(t)2. (9)

As z(t)2 ≥ 0, this proves Part (i). As Υ(1) = 1, it follows that Υ(t) ≤ 1 for all 0 < t < 1.
To bound Υ(t) from below, note that as ϕ(x) ≤ 1√

2π
, we have Φ(x) ≤ 1

2
+ x√

2π
for x ≥ 0.

Taking x =
√

π
2
(1− t), it follows that for 0 < t < 1, we have

Φ
(√π

2
(1− t)

)
≤ 1− t

2
.

Applying Φ−1 to both sides yields that (for 0 < t < 1)√
π

2
(1− t) ≤ Φ−1

(
1− t

2

)
= z(t)

Using (9) then yields that for 0 < t < 1, we have

Υ′(t) = z(t)2 ≤ π

2
(1− t)2 =

d

dt

(
1− π

6
(1− t)3

)
.

Since Υ(1) = 1, we have Υ(t) ≥ 1− π
6
(1− t)3 for 0 < t < 1, completing the proof of Part (ii).

To prove Part (iii), note that as ϕ is decreasing on R≥0, we have that Φ(x) ≤ 1
2
+ xϕ(x)

for x ≥ 0. Taking x = z(t), it follows that for 0 < t < 1, we have

1− t

2
= Φ

(
z(t)

)
− 1

2
≤ z(t)ϕ

(
z(t)

)
.

Using (8) then implies that (1 − t)z′(t) ≥ z(t) for 0 < t < 1. Using (9) then yields that for
0 < t < 1, we have

Υ′(t) = z(t)2 ≤ 1

3
z(t)2 +

2

3
(1− t)z(t)z′(t) =

d

dt

(
1− 1

3
(1− t)z(t)2

)
.

Since Υ(1) = 1, Part (iii) follows by the definition of z(t).

B.4 Proof of Proposition 3

Lemma 3 actually implies the following sharper result.

Lemma 5. Let ∆ be expensive and unbiased on average. Then ∆ is worthwhile if and only if

Υ(C∆) PostVarRed(∆) ≥ C∆cp.

Proof. This is immediate from Lemma 3.
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To derive Proposition 3 from Lemma 5, note that Lemma 4(ii) implies that

PostVarRed(∆) ≥ Υ(C∆) PostVarRed(∆) ≥ PostVarRed(∆)
(
1− π

6
(1− C∆)

3
)

≥ PostVarRed(∆)− π

6
η2(1− C∆)

3,

where the last equality holds as PostVarRed(∆) ≥ η2.

B.5 Proof of Proposition 4

Consider a design E ′ that is unbiased on average with SE′ = SE and CE′ = 0. As E ′

is also cheap, Lemma 3 implies L⋆
E′ = L⋆

E. Since S2
E ≤ S2

O (by Assumption 1), we have
PostVarRed(E ′) = PostVarRed(E) > PostVarRed(O). Hence, Lemma 3 implies L⋆

E′ ≤ L⋆
O.

It follows that L⋆
E = L⋆

E′ ≤ L⋆
O.

B.6 Proof of Proposition 5

We first derive an approximation of the planner’s optimal loss with large research costs.

Lemma 6. If ∆ is an expensive design that is unbiased on average, then we have

L⋆
∆ = η2 + C∆cp − PostVarRed(∆) + O(η2(1− C∆)

3).

Proof. The lemma follows from Lemma 3 and Lemma 4(ii) as PostVarRed(∆) ≤ η2.

Lemma 6 implies that

L⋆
E−L⋆

O = (CE−CO)cp−
(
PostVarRed(E)−PostVarRed(O)

)
+
(
O(η2(1−CE)

3)−O(η2(1−CO)
3)
)
.

The proposition follows by simple rearrangement.

B.7 Proof of Theorem 1

We first consider the case in which O is expensive, and apply that case to deduce the result
for the case in which O is cheap. When O is expensive, by Lemma 3, we can write

L⋆
E − L⋆

O = CEcp − PostVarRed(E)Υ(CE)− COcp + PostVarRed(O)Υ(CO). (10)

Proof of (a) By Lemma 4(i), since CE ≥ CO (by Assumption 1), it follows from (10) that

L⋆
E − L⋆

O ≤ (CE − CO)cp −
(
PostVarRed(E)− PostVarRed(O)

)
Υ(CE).
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Note that as π
6
< 1 and CE ∈ [0, 1], Lemma 4(ii) implies that

Υ(CE) ≥ 1− π

6
(1− CE)

3 ≥ 1− (1− CE) = CE.

Since PostVarRed(E) ≥ PostVarRed(O) (by Assumption 1), it follows that

L⋆
E − L⋆

O ≤ (CE − CO)cp −
(
PostVarRed(E)− PostVarRed(O)

)
CE ≤ 0.

Proof of (b) By Parts (ii) and (iii) of Lemma 4, it follows from (10) that

L⋆
E − L⋆

O ≥ (CE − CO)cp − PostVarRed(E)

+ PostVarRed(O)− 1

3
PostVarRed(O)(1− CO)Φ

−1
(
1− CO

2

)2

.

As O is expensive and X(O) ∼ N (0, η2 + S2
O), we have

C0 ≥ P(|X(O)| ≥ γ⋆
O) = 2

(
1− Φ

(√ cp
PostVarRed(O)

))
.

Rearranging terms and applying Φ−1 yields that

Φ−1
(
1− CO

2

)2

≤ cp
PostVarRed(O)

Hence, we have that

L⋆
E − L⋆

O ≥ (CE − CO)cp − PostVarRed(E) + PostVarRed(O)− (1− CO)cp
3

=
(
CE − 2CO + 1

3

)
cp −

(
PostVarRed(E)− PostVarRed(O)

)
≥ 0.

Proof for the case in which O is cheap Consider a design O′ that is unbiased on
average with SO′ = SO and CO′ = P(|X(O)| ≥ γ⋆

O)). By Lemma 3, we have that L⋆
O′ = L⋆

O′ .
Moreover, O′ is expensive. Hence, we can conclude the assertions for the comparison between
E and O by applying (a) and (b) to compare E to the expensive design O′.
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C Proof omitted from Section 4

C.1 Proof of Theorem 2

We will refer to a trivial design as a design where the researcher does not conduct the study
(and incur zero utility). We let to γ⋆ =

S2
E+η2

η2
√
cp.

Let X0 = X(0) = θ0 + ε denote the type of the researcher. Writing ω = η2

η2+S2
E

, note that

θ0|X0 ∼ N
(

η2

η2+S2
E
X0,

S2
Eη2

S2
E+η2

)
, Hence, the planner’s expected loss conditional on X0 if the

researcher chooses a nontrivial design ∆ that has publication probability p is

(
ω2β2

∆ + cp
)
p+ ω2X2

0 (1− p) + ω2S2
E =

(
ω2(β2

∆ −X2
0 ) + cp

)
p+ ω2(X2

0 + S2
E). (11)

Moreover, if the researcher chooses the trivial design, then the planner’s expected loss con-
ditional on X0 is ω2(X2

0 + S2
E). For 0 ≤ v ≤ 1, define

L⋆(X0, v) = min
p,β∆∈[0,1]×R

∣∣p−cd|β∆|=v

{(
ω2(β2

∆ −X2
0 ) + cp

)
p
}

(12)

denote the minimum expected loss conditional on X0 generated by a nontrivial design and
publication probability that delivers utility exactly v − C0 to the researcher.

We next characterize several properties of L⋆(X0, v) and the optimizer in (12), which we
use in the proof of this theorem and other results from Section 4.

Lemma 7. Under Assumption 2:

(a) If |X0| ̸= γ⋆, then there is a unique optimizer (p̃(X0, v), β∆(X0, v)) in (12) given by

p̃(X0, v) =


v if |X0| < γ⋆

min

{
1,

2v+
√

v2+3c2d(X
2
0−(γ⋆)2)

3

}
if |X0| > γ⋆

and β∆(X0, v) =
p̃(X0,v)−v

cd
.

(b) If |X0| > γ⋆ (resp. |X0| = γ⋆, |X0| < γ⋆), then L⋆(X0, v) is negative (resp. zero,
positive) for v > 0, and has negative (resp., zero, positive) derivative in v over (0, 1).

(c) L⋆(X0, v) has negative derivative in X0 over (0, γ⋆) ∪ (γ⋆,∞).

Proof. Writing |β∆| = p−u−C0

cd
, note that (12) can be written equivalently as

L⋆(X0, v) = min
p∈[0,1]|p≥v

{[
ω2

(
p− v

cd

)2

− ω2X2
0 + cp

]
p

}
. (13)
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Noting that γ⋆ = 1
ω

√
cp, we divide into cases based on the value of |X0| to complete the proof.

• Case 1: |X0| > γ⋆. In this case, we claim that for 0 < v < 1, the quantity L⋆(X0; v) is
the optimum of the relaxed problem

L⋆(X0, v) = min
p∈[0,1]

{[
ω2

(
p− v

cd

)2

− ω2X2
0 + cp

]
p

}
, (14)

and moreover that all optimizers p̃(X0, v) satisfy p̃(X0, v) > v. Indeed, taking p = v

in (14), we can see that the right hand side is negative. It follows that in optimum in
(14), we must have that ω2

(
p−v
cd

)2

− ω2X2
0 + cp < 0. The first-order condition for the

optimality of p then entails that p̃(X0, v) > v, as desired.

In particular, we then have that L⋆(X0; v) < 0. It also follows from first-order condition
for the optimality of p that

p̃(X0, v) = min

{
1,

2v +
√

v2 + 3c2d(X
2
0 − (γ⋆)2)

3

}
.

The Envelope Theorem (Milgrom and Segal, 2002, Theorem 3) guarantees that L⋆(X0; v)

is partially differentiable in v and X0, and that

∂L⋆(X0, v)

∂v
=

2ω2(p⋆(v)− v)p⋆(v)

c2d
< 0

∂L⋆(X0; v)

∂X0

= −2ω2X0p
⋆(v) < 0 for X0 > 0.

• Case 2: |X0| ≤ γ⋆. In this case, the objective in (13) is increasing in p on the interval
[v, 1]. The optimum is therefore achieved at p̃(X0, v) = v (uniquely for |X0| < γ),
so we have that L⋆(X0, v) = [cp − ω2X2

0 ] v. For |X0| = γ⋆, this function is zero. For
|X0| < γ⋆, this function is positive for v > 0, has positive derivative in v, and has
negative derivative in X0 for X0 > 0.

The cases exhaust all possibilities, which completes the proof.

Let us now consider the constrained problem in which the planner must choose a publi-
cation rule that provides type X0 = γ⋆ an indirect utility of u⋆ ∈ [0, 1 − C0]. The linearly
smoothed cutoff rule p⋆

γ⋆+
1−C0−u⋆

cd
,cd

lies within this class, and under the planner’s preferred
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equilibrium, delivers expected loss conditional on X0 of this publication rule is
ω2(X2

0 + S2
E) if |X0| ≤ γ⋆ − u⋆

cd

L⋆(X0, u
⋆ + cd(X0 − γ⋆) + C0) + ω2(X2

0 + S2
E) if γ⋆ − u⋆

cd
< |X0| < γ⋆ + 1−C0−u⋆

cd

L⋆(X0, 1) + ω2(X2
0 + S2

E) if |X0| ≥ γ⋆ + 1−C0−u⋆

cd

.

Lemma 8. Within the class of publication rules that provide type X0 = γ⋆ an indirect utility
of u⋆ ∈ [0, 1− C0], for all types X0 > 0:

(a) the linearly smoothed cutoff rule p
γ⋆+

1−C0−u⋆

cd
,cd

minimizes the expected loss conditional
on X0 (under the planner’s preferred equilibrium), and

(b) any other publication rule within this class minimizes the expected loss conditional on
X0 must provide the same indirect utility to type X0 as p

γ⋆+
1−C0−u⋆

cd
,cd

.

Proof. We divide into cases based on the value of X0.

• Case 1: X0 > γ⋆. If type X0 obtains utility u, then type γ⋆ could obtain utility at
least u − cd(X0 − γ⋆) by choosing a design with the same mean as the design chosen
by X0. Hence, we must have that u− cd(X0− γ⋆) ≤ u⋆. Obviously, we must have that
u ≤ 1−C0. By Lemma 7(b) and the definition of L⋆, the expected loss conditional on
X0 must be at least

L⋆
(
X0,min

{
u⋆ + cd(X0 − γ⋆) + C0, 1

})
+ ω2(X2

0 + S2
E)

with equality only if the indirect utility to X0 is min
{
u⋆ + cd(X0 − γ⋆) + C0, 1

}
.

• Case 2: X0 = γ⋆. By Lemma 7(b) and the definition of L⋆, the expected loss conditional
on X0 must be at least ω2(X2

0 + S2
E) = L⋆(X0, u

⋆ + C0) + ω2(X2
0 + S2

E).

• Case 3: γ⋆− u⋆

cd
≤ X0 < γ⋆. Type X0 could obtain utility at least u⋆+ cd(X0− γ⋆) > 0

by choosing a design with the same mean as the design chosen by γ⋆. By Lemma 7(b)
and the definition of L⋆, the expected loss conditional on X0 must be at least

L⋆(X0, u
⋆ + cd(X0 − γ⋆) + C0) + ω2(X2

0 + S2
E),

with equality only if the indirect utility to type X0 is u⋆ + cd(X0 − γ⋆).

• Case 4: X0 < γ⋆ − u⋆

cd
. By Lemma 7(b) and the definition of L⋆, the expected loss

conditional on X0 must be at least ω2(X2
0 + S2

E), with equality only if the indirect
utility to type X0 is 0.
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The cases exhaust all possibilities, which completes the proof.

We are now ready to complete the proof of the theorem.

Proof of Part (a) Lemma 8(a) implies there exists a utility level u⋆ ∈ [0, 1−C0] for type
γ⋆ such that p

γ⋆+
1−C0−u⋆

cd
,cd

(under the planner’s preferred equilibrium) is optimal. Writing
v⋆ = u⋆ + C0, the expected loss of pγ⋆+ 1−v⋆

cd
,cd

(under the planner’s preferred equilibrium) is

E(v⋆, C0) = EX0

[
L⋆(X0,min{v⋆ + cd(X0 − γ⋆), 1}) 1

{
|X0| ≥ γ⋆ − v⋆ − C0

cd

}]
+ η2. (15)

Differentiating under the integral sign using Lemma 7(b), we see that ∂E
∂v⋆

∣∣
v⋆=C0

< 0 and that
∂E
∂v⋆

∣∣
v⋆=1

> 0. So for p
γ⋆+

1−C0−u⋆

cd
,cd

to be optimal, we must have 0 < u⋆ < 1− C0, hence

0 <
1− C0 − u⋆

cd
<

1− C0

cd
.

Proof of Part (b) Consider an optimal publication rule p⋆ that delivers utility u⋆ to type
X0 = γ⋆. By Lemma 7(a), the publication rule p⋆ (under the planner’s preferred equilibrium)
must deliver expected loss conditional on X0 equal to that of p

γ⋆+
1−C0−u⋆

cd
,cd

for almost all
types X0, and p

γ⋆+
1−C0−u⋆

cd
,cd

must be optimal. In particular, we have 0 < u⋆ < 1−C0. Using
these consequences of optimality, we prove the two assertions in this part separately.

• Suppose for sake of deriving a contradiction that p⋆(X) ̸= p
γ⋆+

1−C0−u⋆

cd
,cd
(X) for a

positive measure of X > 0 with p
γ⋆+

1−C0−u⋆

cd
,cd
(X) > C0. Then, at least one of the

following must occur.

– Case 1: p⋆(X) ̸= 1 for a positive measure of X > γ⋆ + 1−C0−u⋆

cd
. Then types

X0 > γ⋆ + 1−C0−u⋆

cd
with p⋆(X0) < 1 must obtain indirect utility less than 1−C0,

which, by Lemma 8(b), must lead to expected loss conditional on X0 strictly
greater than that of p

γ⋆+
1−C0−u⋆

cd
,cd

—a contradiction.

– Case 2: p⋆(X) ̸= u⋆ + C0 + cd(X − γ⋆) for a positive measure of results X ∈(
γ⋆ − u⋆

cd
, γ⋆ + 1−C0−u⋆

cd

)
. Letting p̃(X0, v) be as defined in Lemma 7(a), by con-

tinuity, a positive measure of types X0 ∈
(
γ⋆ − u⋆

cd
, γ⋆ + 1−C0−u⋆

cd

)
must satisfy

p⋆
(
X0 +

p̃(X, u⋆ + C0 + cd(X0 − γ⋆))− u⋆ − C0

cd

)
̸= p̃(X, u⋆ + C0 + cd(X0 − γ⋆)).
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Hence, if such types are to obtain indrect utility u⋆ + cd(X0 − γ⋆), they must
have publication probability different from p̃(X, u⋆ + C0 + cd(X0 − γ⋆)), which,
by Lemma 7(a), would also lead to expected loss conditional on X0 strictly greater
than that of p

γ⋆+
1−C0−u⋆

cd
,cd

. But Lemma 8(b) implies for X0 ∈
(
γ⋆ − u⋆

cd
, γ⋆ + 1−C0−u⋆

cd

)
,

to obtain expected loss conditional on X0 equal to that of p
γ⋆+

1−C0−u⋆

cd
,cd

, type X0

must obtain indirect utility u⋆ + cd(X0 − γ⋆)—a contradiction.

• Suppose for sake of deriving a contradiction that p⋆(X) > C0 for a positive measure of
X > 0 with p

γ⋆+
1−C0−u⋆

cd
,cd
(X) ≤ C0. Then types X0 ∈ (0, γ⋆ − 1−u⋆

cd
) with p⋆(X0) > C0

must obtain positive indirect utility, which, by Lemma 8(b), must lead to expected
loss conditional on X0 strictly greater than that of p

γ⋆+
1−C0−u⋆

cd
,cd

—a contradiction.

C.2 Proof of Propositions 6 and 7

Let X⋆ be as in Theorem 2(b). We use the notation of the proof of Theorem 2.
Let X0 ∈ (X⋆ − 1−C0

cd
, X⋆). Under publication rule p⋆, type X0 is indifferent between all

designs ∆ with 0 ≤ β∆ ≤ X⋆ − X0, and strictly prefers such designs to all other designs.
These designs yield utility v − C0, where v = 1 − cd(X

⋆ − X0) > C0. Hence, optimality
implies that almost surely, the lowest loss design ∆ with 0 ≤ β∆ ≤ X⋆ −X0 will be chosen.
(11) implies that the expected loss conditional on X0 if type X0 chooses such a design ∆ is

(
ω2(β2

∆ −X2
0 ) + cp

)
p+ ω2(X2

0 + S2
E) where p = 1− cd(X

⋆ −X0 − β∆).

Hence, defining β∆(X0, v) as in Lemma 7(a), the loss-minimizing design has bias β∆(X0, v),
and the publication probability will be p⋆(X) = p̃(X0, v).

To prove Proposition 6(a), suppose that X0 ∈ (X⋆
0 − 1−C0

cd
, γ⋆). Lemma 7(a) implies that

p̃(X0, v) = v and β∆(X0, v) = 0. Hence, almost surely, we have p⋆(X) > C0 and β∆⋆
p⋆

= 0.
To prove Proposition 6(b), suppose that X0 > γ⋆ is such that p̃(X0, v) < 1; there is a

positive measure of such X0 as it follows from Lemma 7(a) that p̃(X0, 1 − cd(X
⋆ − X0)) is

continuous in X0 and satisfies p̃(γ⋆, 1− cd(X
⋆ − γ⋆)) = 1− cd(X

⋆ − γ⋆) < 1. Almost surely,
we then have that p⋆(X) = p̃(X0, v) < 1.

To prove Proposition 7(a), suppose that X0 ∈ (γ⋆, X⋆). If p̃(X0, v) < 1, then by
Lemma 7(a), we have

cdβ∆(X0, v) = p̃(X0, v)− v =
2v +

√
v2 + 3c2d(X

2
0 − (γ⋆)2)

3
− v > v − v = 0.

On the other hand, if p̃(X0, v) = 1, then then by Lemma 7(a), we have β∆(X0, v) = 1−v > 0.
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Hence, almost surely, we have that |β∆⋆
p⋆
| > 0. The case of X0 ∈ (−X⋆,−γ⋆) is analogous.

To prove Proposition 7(b), note that the bound
√
v2 + x ≤ v + x

2v
yields that

2
(
1− cd(X

⋆ −X⋆)
)
+
√(

1− cd(X⋆ −X⋆)
)2

+ 3c2d
(
(X⋆)2 − (γ⋆)2

)
3

> 1.

Hence, by continuity, there exists ζ > 0 such that for all X0 ∈ (X⋆ − ζ,X⋆), we have

2v +
√

v2 + 3c2d(X
2
0 − (γ⋆)2)

3
> 1.

For such X0, by Lemma 7(a), we have p̃(X0, v) = 1 and X0 + β∆(X0, v) = X0 +
1−v
cd

= X⋆.
Hence, almost surely, we have that p⋆(X) = 1 and that |X0 + β∆⋆

p⋆
| = X⋆. The case of

X0 ∈ (−X⋆,−X⋆ + ζ) is analogous.

C.3 Proof of Proposition 8

Consider the function E(v⋆, C0) defined in (15) in the proof of Theorem 2. Differentiating
E⋆ using the Fundamental Theorem of Calculus implies that

∂E
∂C0

= − 2

cd
L⋆

(
γ⋆ − v⋆ − C0

cd
, C0

) exp
(
−

(
γ⋆− v⋆−C0

cd

)2

2(S2
E+η2)

)
√
2π(S2

E + η2)
.

Lemma 7(b) implies that L⋆
(
γ⋆ − v⋆−C0

cd
, C0

)
> 0 for 0 < C0 < v∗ < 1, and it then follows

from Lemma 7(c) that ∂2E
∂v⋆∂C0

< 0. As the set D = {(v⋆, C0) | 1 ≥ v⋆ ≥ C0 ≥ 1− cdγ
⋆} is a

lattice, E is a submodular function on D. Topkis’s Theorem implies that the optimizer set

argmin
v⋆∈[C0,1]

E(v⋆, C0)

is increasing in C0 in the strong set order over the interval C0 ∈ [1− cdγ
⋆, 1]. As E(v⋆, C0) is

the expected loss of pγ⋆+ 1−v⋆

cd
,cd

(under the planner’s preferred equilibrium), the set of optimal
cutoffs X⋆ in Theorem 2 is

γ⋆ +
1

cd
− 1

cd
argmin
v⋆∈[C0,1]

E(v⋆, C0),

which is decreasing in the strong set order over the interval C0 ∈ [1− cdγ
⋆, 1].
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D Proof of Proposition 9
We prove each claim separately.
Proof of (i) For the first claim it suffices to note that

L⋆
M ≥ min

∆,p
E
[
Lp(X(∆),∆, θ0)

]
(16)

where in the right hand side we minimize both over the design ∆ and the publication rule p.
Note that for any publication rule p, minimizer over ∆ on the right-hand side of Equation
(16) sets β∆ = 0 since it is easy to show that E

[
Lp(X(∆),∆, θ0)

]
is increasing in the bias

β∆. In addition, because we have a cheap design, for β∆ = 0, the minimizer over the right
hand side expression equals p⋆ = 1{|X| ≥ γ⋆

E} from Proposition 1. Therefore, for a cheap
design E, it follows that

min
∆,p

E
[
Lp(X(∆),∆, θ0)

]
= L⋆

E

completing the claim for (i).
Proof of (ii) For the second claim, from Theorem 2, we can write

L⋆
M ≤ E

[
Lp′(X(∆⋆

p′),∆
⋆
p′ , θ0)

]
, p′(X) = 1

{
|X| ≥ γ⋆

E +
1

cd

}
(17)

since p′ is a sub-optimal publication rule. Therefore, by expanding the expression on the
right-hand side of Equation (17)

L⋆
M ≤ E

[(
ε+ β∆⋆

p′

)2
p′(X) + η2(1− p′(X)) + cpp

′(X)

]
= E

[
ε2p′(X) + η2(1− p′(X)) + cpp

′(X)
]︸ ︷︷ ︸

(A)

+E[β2
∆⋆

p′
p′(X)] + 2E[β∆⋆

p′
εp′(X)]︸ ︷︷ ︸

(B)

It follows that under p′ for all results for which |θ0 + ε| ∈ [γ⋆
E, γ

⋆
E + 1

cd
], the researcher

chooses |β∆⋆
p′
| = γ⋆

E + 1
cd

− |θ0 + ε|. For all |θ0 + ε| < γ⋆
E, the researcher chooses |β∆⋆

p′
| = 0

(and similarly |β∆⋆
p′
| = 0 if |θ0 + ε| > γ⋆

E + 1
cd

). Therefore, we can write in equilibrium
p′(X(∆⋆

p′)) = 1{|θ0 + ε| ≥ γ⋆
E}. As a result, we can write as we define p′′(x) = 1{|x| ≥ γ⋆

E}

(A) = E
[
ε2p′(X) + η2(1− p′(X)) + cpp

′(X)
]
= E

[
Lp′′(θ0 + ε, 0, θ0)

]
(B) = E[β2

∆⋆
p′
p′′(θ0 + ε)] + 2E[β∆⋆

p′
εp′′(θ0 + ε)].

That is (A) equals the loss function as if there was no manipulation, under a publication
rule p′′. (B) captures the manipulation component. We next study (B).

44



We consider each term in (B). First note that for the first term, we can write

β2
∆⋆

p′
≤ 1

c2d
⇒ E[β2

∆⋆
p′
p′′(θ0 + ε)] ≤ 1

c2d

since the researcher will never choose a bias larger than 1/cd under p′(x). For the second
term, we can write

E[β∆⋆
p′
εp′′(θ0 + ε)] ≤

√
E[β2

∆⋆
p′
]S2

E ≤ SE

cd

where the first inequality follows from from Cauchy-Schwarz inequality, and the second
inequality by the bound on the bias in equalibrium.

Collecting the terms, we can write

L⋆
E − L⋆

M ≥ L⋆
E − E

[
Lp′′(θ0 + ε, 0, θ0)

]
− 1 + 2SEcd

c2d
.

Here, L⋆
E is the loss for an expensive design with no manipulation with cost CE. On the other

hand, E
[
Lp′′(θ0 + ε, 0, θ0)

]
= L⋆

O for a design O with cost CO = 0 and variance S2
O = S2

E. It

follows that L⋆
E − E

[
Lp′′(θ0 + ε, 0, θ0)

]
= IC(E), completing the proof.
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