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A Main Proofs

Throughout the rest of our discussion we define

Πo,n =
{
πα ∈ Π : πα ∈ arg sup

π∈Π

{
αŴ0(π) + (1− α)Ŵ1(π)

}
, s.t. α ∈ (0, 1)

}
, (A.1)

and let N =
√
n as discussed in the main text. We denote α1 − α2 = ε, where, recall, the

grid of (αi)
N
i=1 contains elements equally spaced. We say that x . y if y ≤ c0x for a finite

constant c0 independent of n.

A.1 Auxiliary Lemmas

Lemma A.1. Under Assumption 2.1, 4.2 for any sensitive attribute s ∈ {0, 1}

Ws(π) = E
[1{Si = s}

ps

( YiDi

e(Xi, s)
− Yi(1−Di)

1− e(Xi, s)

)
π(Xi, s)

]
. (A.2)

∗Stanford Graduate School of Business and Department of Economics, Harvard University. Email: dvi-
viano@fas.harvard.edu. This work was mostly conducted while at the Department of Economics, University
of California at San Diego, La Jolla, CA, 92093.
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Proof of Lemma A.1. Assumption 4.2 guarantees existence of the expectation. By defini-

tion of the conditional expectation

(A.2) = E
[( YiDi

e(Xi, s)
− Yi(1−Di)

1− e(Xi, s)

)
π(Xi, s)

∣∣∣Si = s
]
.

Using the law of iterated expectations and Assumption 2.1 the result directly follows.

Lemma A.2. Let Ws,n = 1
n

∑n
i=1(Γ1,s,i−Γ0,s,i)π(Xi, s), where Γd,s,i is defined as in Equa-

tion (10). Let Assumptions 2.1, 4.1, and 4.2 hold. Then with probability at least 1− γ,

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αW0,n(π)+(1−α)W1,n(π)
∣∣∣ ≤ C̄

M

δ2

√
v/n+

C̄M

δ2

√
log(2/γ)/n

(A.3)

for a universal constant C̄ <∞. In addition,

E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1−α)W1(π)−αW0,n(π) + (1−α)W1,n(π)
∣∣∣] ≤ C̄

M

δ2

√
v/n. (A.4)

Proof of Lemma A.2. Throughout the proof we refer to C̄ < ∞ as a universal constant.

Observe first that under Assumption 4.2 and Assumption 4.1, we have

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αW0,n(π) + (1− α)W1,n(π)
∣∣∣, (A.5)

satisfies the bounded difference assumption (Boucheron et al., 2013) with constant 2M
δ2n

.1 See

for instance Boucheron et al. (2005). By the bounded difference inequality, with probability

1This follows from the triangular inequality and the fact that under Assumption 4.2 the inverse prob-
ability weight is uniformly bounded by 1/δ2 and under Assumption 4.1 the conditional mean function is
bounded by M .
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at least 1− γ,

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αW0,n(π) + (1− α)W1,n(π)
∣∣∣

≤ E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αW0,n(π) + (1− α)W1,n(π)
∣∣∣]+ C̄

M

δ2

√
log(2/γ)/n.

(A.6)

We now move to bound the expectation in the right-hand side of Equation (A.6). Under

Assumption 2.1, we obtain by Lemma A.1 and trivial rearrangments, that

E
[
αW0(π) + (1− α)W1(π)− αW0,n(π) + (1− α)W1,n(π)

]
= 0. (A.7)

Using the symmetrization argument (Van Der Vaart and Wellner, 1996), we can now

bound the above supremum with the Radamacher complexity of the function class of

interest, which combined with the triangle inequality reads as follows:

E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αW0,n(π) + (1− α)W1,n(π)
∣∣∣]

≤ E
[

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)− αW0,n(π)
∣∣∣]+ E

[
sup
α∈(0,1)

sup
π∈Π

∣∣∣(1− α)W1(π)− (1− α)W1,n(π)
∣∣∣]

≤ E
[

sup
π∈Π

∣∣∣W0(π)−W0,n(π)
∣∣∣]+ E

[
sup
π∈Π

∣∣∣W1(π)−W1,n(π)
∣∣∣]

≤ E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σiπ(Xi, 1)Γ1,1,i

∣∣∣]+ E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σiπ(Xi, 1)Γ0,1,i

∣∣∣]
+ E

[
sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σiπ(Xi, 0)Γ1,0,i

∣∣∣]+ E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σiπ(Xi, 0)Γ0,0,i

∣∣∣],
(A.8)

where here σi are independent Radamacher random variables. We can study each compo-

nent of the above expression separately. By the Dudley’s entropy integral bound, since the

VC-dimension of the function class Π is bounded by Assumption 4.1, and since each Γd,s, is

bounded, we obtain (see for instance Wainwright (2019)), under Assumption 4.1 (A) and
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(B), with trivial rearrangement

E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σiπ(Xi, s)Γd,s,i

∣∣∣] ≤ MC̄

δ2

√
v/n. (A.9)

for each d, s. The remaining terms follow similarly. The proof is complete.

Lemma A.3. Let Assumptions 2.1, 4.1-4.3 hold. Then with probability at least 1− γ,

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π)+(1−α)W1(π)−αŴ0(π)+(1−α)Ŵ1(π)
∣∣∣ ≤ C̄

M

δ2

√
v/n+

C̄M

δ2

√
log(2/γ)/n

(A.10)

for a universal constant C̄ <∞.

Proof of Lemma A.3. First observe that we can bound the above expression as

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αŴ0(π) + (1− α)Ŵ1(π)
∣∣∣ ≤

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αW0,n(π) + (1− α)W1,n(π)
∣∣∣︸ ︷︷ ︸

(I)

+ sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0,n(π) + (1− α)W1,n(π)− αŴ0(π) + (1− α)Ŵ1(π)
∣∣∣︸ ︷︷ ︸

(II)

.

(A.11)

Here Ws,n is as defined in Lemma A.2. The term (I) is bounded as in Lemma A.2. There-

fore, we are only left to discuss (II).

Using the triangular inequality, we only need to bound

sup
π∈Π

∣∣∣W0,n(π)− Ŵ0,n(π)
∣∣∣+ sup

π∈Π

∣∣∣W1,n(π)− Ŵ1,n(π)
∣∣∣. (A.12)
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We bound the first term while the second term follows similarly. We write

sup
π∈Π

∣∣∣Ws,n(π)− Ŵs(π)
∣∣∣

≤
∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

Di(Yi −m1,s(Xi))

e(Xi, s)
π(Xi, s) +

1{Si = s}
ps

m1,s(Xi)π(Xi, s)

− 1

n

n∑
i=1

1{Si = s}
p̂s

Di(Yi − m̂1,s(Xi))

ê(Xi, s)
π(Xi, s)−

1{Si = s}
p̂s

m̂1,s(Xi)π(Xi, s)
∣∣∣

+
∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

(1−Di)(Yi −m0,s(Xi))

1− e(Xi, s)
π(Xi, s) +

1{Si = s}
ps

m0,s(Xi)π(Xi, s)

− 1

n

n∑
i=1

1{Si = s}
p̂s

(1−Di)(Yi − m̂s,0(Xi))

1− ê(Xi, s)
π(Xi, s)−

1{Si = s}
p̂s

m̂0,s(Xi)π(Xi, s)
∣∣∣.

(A.13)

We discuss the first component while the second follows similarly.

With trivial re-arrengment, using the triangular inequality, we obtain that the following

holds

∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

Di(Yi −m1,s(Xi))

e(Xi, s)
π(Xi, s) +

1{Si = s}
ps

m1,s(Xi)π(Xi, s)

− 1

n

n∑
i=1

1{Si = s}
p̂s

Di(Yi − m̂1,s(Xi))

ê(Xi, s)
π(Xi, s)−

1{Si = s}
p̂s

m̂1,s(Xi)π(Xi, s)
∣∣∣

≤ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂sê(Xi, s)

)
π(Xi, s)

∣∣∣︸ ︷︷ ︸
(i)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(1{Si = s}Di

ê(Xi, s)p̂s
− 1{Si = s}

ps

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi, s)

∣∣∣︸ ︷︷ ︸
(ii)

.

(A.14)

We study (i) and (ii) separately. We start from (i). Recall, that by cross fitting ê(Xi, s) =

ê−k(i)(Xi, s), where k(i) is the fold containing unit i. Therefore, observe that given the K
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folds for cross-fitting, we have

∣∣∣ 1
n

n∑
i=1

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂sê(Xi, s)

)
π(Xi, s)

∣∣∣
≤

∑
k∈{1,...,K}

∣∣∣ 1
n

∑
i∈Ik

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂
(−k(i))
s ê(−k(i))(Xi, s)

)
π(Xi, s)

∣∣∣.
(A.15)

In addition, we have that

E
[∑
i∈Ik

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂
(−k(i))
s ê(−k(i))(Xi, s)

)
π(Xi, s)

]
= E

[
E
[∑
i∈Ik

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂
(−k(i))
s ê(−k(i))(Xi, s)

)
π(Xi, s)

∣∣∣p̂(−k(i)), ê(−k(i))
]]

= 0,

(A.16)

by cross-fitting. By Assumption 4.3, we know that

∣∣∣ 1

pSe(X,S)
− 1

p̂
(−k(i))
S ê(−k(i))(X,S)

∣∣∣ ≤ 2/δ2 (A.17)

almost surely and therefore each summand in Equation (A.15) is bounded by a finite con-

stant 2MC̄/δ2, for a universal constant C̄. We now obtain, using the symmetrization

argument (Van Der Vaart and Wellner, 1996), and the Dudley’s entropy integral (Wain-

wright, 2019)

E
[

sup
π∈Π
| 1
n

∑
i∈Ik

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂
(−k(i))
s ê(−k(i))(Xi, s)

)
π(Xi, s)|

∣∣∣p̂(−k(i)), ê(−k(i))
]

.
M

δ2

√
v/n.

(A.18)

In addition, by the bounded difference inequality (Boucheron et al., 2005), with probability
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at least 1− γ, for a universial constant c <∞

sup
π∈Π

∣∣∣ 1
n

∑
i∈Ik

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂
(−k(i))
s ê(−k(i))(Xi, s)

)
π(Xi, s)

∣∣∣ ≤
E
[

sup
π∈Π
| 1
n

∑
i∈Ik

1{Si = s}Di(Yi −m1,s(Xi))
( 1

pse(Xi, s)
− 1

p̂
(−k(i))
s ê(−k(i))(Xi, s)

)
π(Xi, s)|

∣∣∣p̂(−k(i)), ê(−k(i))
]

+ c
M

δ2

√
log(2/γ)

n
.

(A.19)

We now consider the term (ii). Observe that we can write

(ii) ≤ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(Di1{Si = s}
p̂sê(Xi, s)

− Di1{Si = s}
pse(Xi, s)

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi, s)

∣∣∣︸ ︷︷ ︸
(j)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(Di1{Si = s}
pse(Xi, s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi, s)

∣∣∣︸ ︷︷ ︸
(jj)

.

(A.20)

We consider each term seperately. Consider (jj) first. Using the cross-fitting argument we

obtain

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(Di1{Si = s}
pse(Xi, s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂1,s(Xi))π(Xi, s)

∣∣∣
≤

∑
k∈{1,...,K}

sup
π∈Π

∣∣∣ 1
n

∑
i∈Ik

(Di1{Si = s}
pse(Xi, s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂(−k(i))

1,s (Xi))π(Xi, s)
∣∣∣.

(A.21)

Observe now that

E
[(Di1{Si = s}

pse(Xi, s)
− 1{Si = s}

ps

)
(m1,s(Xi)− m̂(−k(i))

1,s (Xi))π(Xi, s)
∣∣∣m̂(−k(i))

1,s

]
= 0, (A.22)

since by cross-fitting, m̂
(−k(i))
1,s is independent of (Di, Si, Xi) and, as a result, the conditional

expectation of the left-hand side in Equation (A.22), also conditional on Xi equals zero.

Therefore, following the same argument used for (i) in Equation (A.14), we obtain that

7



with probability at least 1− γ∑
k∈{1,··· ,K}

sup
π∈Π

∣∣∣ 1
n

∑
i∈Ik

(Di1{Si = s}
pse(Xi, s)

− 1{Si = s}
ps

)
(m1,s(Xi)− m̂(−k(i))

1,s (Xi))π(Xi, s)
∣∣∣

.
KM

δ2

√
vK

n
+
MK

δ2

√
log(2K/γ)

n
,

(A.23)

where the number of folds K is a constant. We are now left to bound (j) in Equation

(A.20). We obtain that

(j) ≤

√√√√ 1

n

n∑
i=1

( 1

p̂sê(Xi, s)
− 1

pse(Xi, s)

)2

√√√√ 1

n

n∑
i=1

(m1,s(Xi)− m̂1,s(Xi))2. (A.24)

Such a bound does not depend on π. Observe now that we can write by Assumption 4.3√√√√ 1

n

n∑
i=1

( 1

p̂sê(Xi, s)
− 1

pse(Xi, s)

)2

√√√√ 1

n

n∑
i=1

(m1,s(Xi)− m̂1,s(Xi))2

≤ 1

δ

√ ∑
k∈{1,...,K}

1

n

∑
i∈Ik

( 1

ê(−k(i))(Xi, s)p̂−k(i)
− 1

e(Xi, s)ps

)2
√ ∑

k∈{1,...,K}

1

n

∑
i∈Ik

(m1,s(Xi)− m̂(−k(i))
1,s (Xi))2.

(A.25)

By the bounded difference inequality, and the union bound we obtain that the following

holds:√ ∑
k∈{1,...,K}

1

n

∑
i∈Ik

( 1

ê(−k(i))(Xi, s)p̂−k(i)
− 1

e(Xi, s)ps

)2
√ ∑

k∈{1,...,K}

1

n

∑
i∈Ik

(m1,s(Xi)− m̂(−k(i))
1,s (Xi))2

≤ K

√
E
[( 1

ê(Xi, s)p̂
− 1

e(Xi, s)ps

)2]√
E
[
(m1,s(Xi)− m̂1,s(Xi))2

]
+ 2 4
√

log(2K/γ)/n

√
E
[( 1

ê(Xi, s)p̂
− 1

e(Xi, s)ps

)2]
+ 2 4
√

log(2K/γ)/n

√
E
[
(m1,s(Xi)− m̂1,s(Xi))2

]
+ 2
√

log(2K/γ)/n,

(A.26)

with probability at least 1 − γ. Under Assumption 4.3 and the union bound, the result

completes since K is a finite number.
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Lemma A.4. Let

G(α) = sup
π∈Π

{
αW0(π) + (1− α)W1(π)

}
− sup

π∈Π̂o

{
αW0(π) + (1− α)W1(π)

}
. (A.27)

Define

G = {G(α), α ∈ (0, 1)}.

Under Assumption 4.1, for any ε > 0, there exist a set {α1, ..., αN(ε)}, such that for all

α ∈ (0, 1),

|G(α)− max
j∈{1,...,N(ε)}

G(αj)| ≤ 4εM, (A.28)

and N(ε) ≤ 1 + 1/ε.

Proof of Lemma A.4. We denote {α1, ..., αN(ε)} an ε-cover of the interval (0, 1) with respect

to the L1 norm. Namely, {α1, ..., αN(ε)} are equally spaced numbers between (0, 1). Clearly,

we have that the covering number N(ε) ≤ 1 + 1/ε. We denote

G(α) = sup
π∈Π

αW0(π) + (1− α)W1(π)− sup
π∈Π̂o

{
αW0(π) + (1− α)W1(π)

}
. (A.29)

To characterize the corresponding cover of the function class

G = {G(α), α ∈ (0, 1)},

we claim that for any α ∈ (0, 1), there exist an αj in the ε cover such that

|G(α)−G(αj)| ≤ 4εM. (A.30)

Such a result follows by the argument outlined in the following lines.
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Take αj closest to α. Consider

|G(α)−G(αj)|

=
∣∣∣ sup
π∈Π

{
αW0(π) + (1− α)W1(π)

}
− sup

π∈Π̂o

{
αW0(π) + (1− α)W1(π)

}
− sup

π∈Π

{
αjW0(π) + (1− αj)W1(π)

}
+ sup

π∈Π̂o

{
αjW0(π) + (1− αj)W1(π)

}∣∣∣
≤
∣∣∣ sup
π∈Π

{
αW0(π) + (1− α)W1(π)

}
− sup

π∈Π

{
αjW0(π) + (1− αj)W1(π)

}∣∣∣︸ ︷︷ ︸
(i)

+
∣∣∣ sup
π∈Π̂o

{
αW0(π) + (1− α)W1(π)

}
− sup

π∈Π̂o

{
αjW0(π) + (1− αj)W1(π)

}∣∣∣︸ ︷︷ ︸
(ii)

.

(A.31)

We study (i) and (ii) separately. Consider first (i). We observe the following fact:

whenever

sup
π∈Π

αW0(π) + (1− α)W1(π)− sup
π∈Π

αjW0(π) + (1− αj)W1(π) > 0 (A.32)

then we can bound

(i) ≤
∣∣∣αW0(π∗) + (1− α)W1(π∗)− αjW0(π∗) + (1− αj)W1(π∗)

∣∣∣. (A.33)

Here π∗ ∈ arg supπ∈Π αW0(π) + (1− α)W1(π). When instead

sup
π∈Π

αW0(π) + (1− α)W1(π)− sup
π∈Π

αjW0(π) + (1− αj)W1(π) ≤ 0 (A.34)

we can use the same argument by switching sign, which, with trivial rearrengment reads

as

(i) ≤
∣∣∣αW0(π∗∗) + (1− α)W1(π∗∗)− αjW0(π∗∗) + (1− αj)W1(π∗∗)

∣∣∣. (A.35)
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Here π∗∗ ∈ arg supπ∈Π αjW0(π) + (1− αj)W1(π). Therefore we obtain,

(i) ≤ sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αjW0(π) + (1− αj)W1(π)
∣∣∣ ≤ 2|α− αj|M (A.36)

where the last inequality follows by Assumption 4.1 and the triangle inequality. Similar

reasoning also applies to (ii). Since αj was chosen to be the closest to α, we have |αj−α| ≤

ε.

A.2 Proof of Lemma 2.1

The proof follows similarly to standard microeconomic textbook (Mas-Colell et al., 1995).

Let

Π̃ = {πα : πα ∈ arg sup
π∈Π

α1W0(π) + α2W1(π), α ∈ R2
+, α1 + α2 > 0}. (A.37)

Then we want to show that Πo = Π̃. Trivially Π̃ ⊆ Πo, since otherwise the definition of

Pareto optimality would be violated. Consider now some π∗ ∈ Πo. Then we show that

there exist a vector α ∈ R2
+, such that π∗ maximizes the expression

sup
π∈Π

α1W0(π) + α2W1(π). (A.38)

Denote the set

F = {(W̃0, W̃1) ∈ R2 : ∃π ∈ Π : W̃0 ≤ W0(π) and W̃1 ≤ W1(π)}. (A.39)

Since (0, 0) ∈ F , such a set is non-empty. Notice now that Ws(π) is linear is π for

s ∈ {0, 1}. Therefore, we obtain that the set F is a convex set, since it denotes the sub-

graph of a concave functional. We denote W̄ = (W0(π∗),W1(π∗)) and G = R2
++ + W̄ the

set of welfares that strictly dominates π∗. Then G is non-empty and convex. Since π∗ ∈ Πo,

we must have that F ∩ G = ∅. Therefore, by the separating hyperplane theorem, there

exist an α ∈ R2, with α 6= 0, such that α>F ≤ α>(W̄ + d) for any F ∈ F , d ∈ R2
++. Let

11



d1 →∞, it must be that α1 ∈ R+, and similarly for α2. So α ∈ R2
+. By letting d→ 0, we

have that α>F ≤ α>W̄ . This implies that

α1W0(π) + α2W1(π) ≤ α1W0(π∗) + α2W1(π∗) (A.40)

for any π ∈ Π (since it is true for any F ∈ F). Hence π∗ maximizes welfare over all

possible feasible allocations once reweighted by (α1, α2). Since the maximizer is invariant

to multiplication of the objective function by constants, the result follows after dividing

the objective function by the sums of the coefficients, which is non-zero by the separating

hyperplane theorem. This completes the proof.

A.3 Proof of Proposition 2.2

First, observe that by rationality, preferences are complete and transitive. Observe also

that the preference function equivalently correspond to lexico-graphic with π � π′ if π

Pareto dominates π′. If instead neither π, π′, Pareto dominates the other, then π � π′ is

UnFairness (π) < UnFairness (π′). Therefore, it must be that C(Π) ⊆ Πo, with π? ∈ C(Π)

if and only if

π? ∈ arg min
π∈Πo

UnFairness(π).

By Lemma 2.1 the result directly follows.

A.4 Proof of Corollary 1

Define Π̃ ⊆ Π the set of policies that satisfy the constraint in Equation (7) (i.e., feasible

allocations). By Proposition 2.2 Π̃ = Πo. Observe now that πω is a feasible allocation

under the constraint in Equation (7). This directly implies the conclusion for πω.

Consider now π̃, and fairness constraints not being binding. If π̃ is Pareto optimal,

then it represents a feasible allocation (i.e. it satisfies the constraint in Equation (7)). If it

is not, then any other allocation that is Pareto optimal and Pareto dominates π̃ is feasible

under the constraint in Equation (7) completing the proof. Finally, whenever fairness
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constraints are binding, the estimated policy contains as one possible solution the policy

which maximizes the utilitarian welfare under fairness constraints. This follows from the

fact that in such case

π̃ ∈
{

arg max
π∈Π

p1W1(π) + (1− p1)W0(π)
}
⊆ Πo,

since Π = Π(κ).

A.5 Proof of Theorem 4.1

Throughout the proof we refer to C̄ <∞ as a universal constant. We write

sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− max
αj∈{α1,...,αN}

αjŴ0(π)− (1− αj)Ŵ1(π)− λ/
√
n
∣∣∣

≤ sup
α∈(0,1)

sup
π∈Π

∣∣∣αW0(π) + (1− α)W1(π)− αŴ0(π)− (1− α)Ŵ1(π)
∣∣∣︸ ︷︷ ︸

(I)

+
λ√
n

+ sup
α∈(0,1)

sup
π∈Π

∣∣∣αŴ0(π) + (1− α)Ŵ1(π)− max
αj∈{α1,...,αN}

αjŴ0(π)− (1− αj)Ŵ1(π)
∣∣∣︸ ︷︷ ︸

(II)

.

(A.41)

(I) is bounded as in Lemma A.3. (II) is bounded as follows.

(II) ≤ ε sup
π∈Π
|Ŵ0(π)|+ ε sup

π∈Π
|Ŵ1(π)|. (A.42)

Under Assumption 4.3, the estimated conditional mean and propensity score are uniformly

bounded. Therefore we obtain that

ε sup
π∈Π
|Ŵ0(π)|+ sup

π∈Π
ε|Ŵ1(π)| ≤ C̄ε

M

δ2
≤ C̄

M

Nδ2
.
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A.6 Proof of Theorem 4.2

Recall the definition of W̄α in Equation (4). The set of Pareto optimal policies reads as

follows

π : αW1(π) + (1− α)W0(π) ≥ W̄α for some α ∈ (0, 1).

Now it suffices to show for the claim to hold that

P
(
∀α ∈ (0, 1), max

j∈{1,··· ,N}
W̄α − W̄j,n + λ(γ)/

√
n+

b

N
≥ 0
)
≤ γ,

where λ(γ) = b(
√
v +

√
log(2/γ)), whenever N =

√
n (and hence λ = λ(γ) + b). Observe

that since {α1, · · · , αN} are equally spaced, we have that for all α ∈ (0, 1)

sup
π∈Π

αW1(π) + (1− α)W0(π) ≥ sup
π∈Π

αjW1(π) + (1− αj)W0(π) +Mε

for some j ∈ {1, · · · , N} by Assumption 4.2 (ii). Taking b ≥M, ε = 1/N , we have

P
(
∀α ∈ (0, 1), max

j∈{1,··· ,N}
W̄α − W̄j,n + λ(γ)/

√
n+

b

N
≥ 0
)

≤ P
(

max
j∈{1,··· ,N}

W̄αj − W̄j,n + λ(γ)/
√
n ≥ 0

)
.

We now observe that the following inequality holds:

sup
π∈Π

αjW1(π) + (1− αj)W0(π)− W̄j,n

= sup
π∈Π

{
αjW1(π) + (1− αj)W0(π)

}
− sup

π∈Π

{
αŴ1(π) + (1− α)Ŵ0(π)

}
≤ 2 sup

π∈Π

∣∣∣αjW1(π) + (1− αj)W0(π)− αjŴ1(π) + (1− αj)Ŵ0(π)
∣∣∣.

By Lemma A.3, with probability at least 1− γ,

sup
π∈Π

max
αj ,j∈{1,··· ,N}

∣∣∣αjW1(π)+(1−αj)W0(π)−αjŴ1(π)+(1−αj)Ŵ0(π)
∣∣∣ ≤ C̄

√
v

n
+C̄

√
log(2/γ)

n

for a finite constant C̄ independent of n. By choosing b ≥ 2C̄ +M , the proof completes.
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A.7 Proof of Theorem 4.3

By Theorem 4.2 with probability at least 1− γ, Πo ⊆ Π̂o(λ) with Π̂o(λ) in Equation (14).

As a result, we can write with probability 1− γ,

UnFairness(π̂)− infπ∈ΠoUnFairness(π) ≤ UnFairness(π̂)− infπ∈Π̂o(λ)UnFairness(π).

We then write

UnFairness(π̂)− infπ∈Π̂o(λ)UnFairness(π) = UnFairness(π̂)− V̂n(π̂) + V̂n(π̂)− infπ∈Π̂o(λ)UnFairness(π).

Since π̂λ ∈ Π̂o(λ), we have

UnFairness(π̂)− V̂n(π̂) + V̂n(π̂)− infπ∈Π̂o(λ)UnFairness(π)

≤ 2 sup
π∈Π̂o(λ)

∣∣∣UnFairness(π)− V̂n(π)
∣∣∣ ≤ 2 sup

π∈Π

∣∣∣UnFairness(π)− V̂n(π)
∣∣∣

where the last equality follows from the fact that Π̂o(λ) ⊆ Π. Assumption 4.4 bounds

supπ∈Π

∣∣∣UnFairness(π)− V̂n(π)
∣∣∣ completing the proof.

A.8 Proof of Theorem 4.4

For D̂(π) it suffices to observe that

sup
π∈Π

∣∣∣Ŵ1(π1)− Ŵ0(π)−W1(π) +W0(π)
∣∣∣ ≤ sup

π∈Π

∣∣∣Ŵ1(π1)−W1(π)
∣∣∣+ sup

π∈Π

∣∣∣W0(π)− Ŵ0(π)
∣∣∣

(A.43)

with each term being bounded with probability at least 1−2γ2, by C̄
√
v/n+C̄

√
log(2/γ)/n

for a finite constant C̄ <∞, similarly to what discussed in the proof of Lemma A.3.

The UnFairness bound follows as a corollary of Theorem 4.3, where here Assumption

4.4 holds with K(Π, γ)n−η . C̄
√
v/n + C̄

√
log(2/γ)/n for a finite constant C̄ < ∞, i.e.,

the bound of Equation (A.43).

22γ follows by the union bound.
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For Ĉ(π) the argument follows similarly, after noticing that we can bound

sup
π∈Π

∣∣∣ 1

np̂1

n∑
i=1

π(Xi)Si − E[π(X)|S = 1] +
1

n(1− p̂1)

n∑
i=1

π(Xi)(1− Si)− E[π(X)|S = 0]
∣∣∣

≤ sup
π∈Π

∣∣∣ 1

np̂1

n∑
i=1

π(Xi)Si − E[π(X)|S = 1]
∣∣∣︸ ︷︷ ︸

(A)

+ sup
π∈Π

∣∣∣ 1

(1− p̂1)n

n∑
i=1

π(Xi)(1− Si)− E[π(X)|S = 0]
∣∣∣︸ ︷︷ ︸

(B)

.

We proceed by bounding (A),while (B) follows similarly. We have

(A) ≤ sup
π∈Π

∣∣∣ 1

p1n

n∑
i=1

π(Xi)Si − E[π(X)|S = 1]
∣∣∣︸ ︷︷ ︸

(i)

+
∣∣∣ 1

p1

− 1

p̂1

∣∣∣︸ ︷︷ ︸
(ii)

,

where the second component follows by the triangular inequality and the fact that π(Xi)Si ∈

{0, 1}. We now observe that each summand in (i) is centered around its expectation.

Therefore, we can bound (i) using the Radamacher complexity of Π, with

E[(i)] ≤ 2

δ
E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σiπ(Xi)Si

∣∣∣],
with σ1, · · · , σn being independent Radamacher random variables. Using the Dudley’s

entropy bound (see Wainwright (2019)) it is easy to show that the right-hand side is

bounded by C̄
√
v/n for a constant C̄ <∞. Finally, using the bounded difference inequality

(Boucheron et al., 2003), with probability at least 1− γ,

|(i)− E[(i)]| ≤ C̄

√
log(2/γ)

n
,

for a finite constant C̄. The bound on the second component (ii) follows from standard

property of the sample mean and the assumption that p̂1 ≥ δ. The final statement follows

as a direct corollary of Theorem 4.3.
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For I(π) the claim holds since

sup
π∈Π

∣∣∣Is(π)− Îs(π)
∣∣∣ ≤

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(Γ̂1,s,i − Γ̂0,s,i)π(Xi, s
′)− E

[
(Γ1,s,i − Γ0,s,i)π(Xi, s

′)
]∣∣∣︸ ︷︷ ︸

(A)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(Γ̂1,s,i − Γ̂0,s,i)π(Xi, s)− E[(Γ1,s,i − Γ0,s,i)π(Xi, s)]
∣∣∣︸ ︷︷ ︸

(B)

.

(A.44)

Observe now that under Assumption 4.3, following the same argument in Lemma A.3, we

can bound (A) and (B) as follows

(A) .

√
v

n
+

√
log(2/γ)

n
, (B) .

√
v

n
+

√
log(2/γ)

n
.

with probability at least 1−γ. The reader may refer to the proof of Lemma A.3 for details.

A.9 Proof of Theorem 4.5

First, since π(x, s) is constant in s with an abuse of notation we can write π(x) as a function

of x only. We first observe that we can write

C(π) = E
[
(
(1− S)

1− p1

− S

p1

)π(X)
]

= E
[ (p1 − S)

(1− p1)p1

π(X)
]

For the lower bound it suffices to find one distribution which satisfies the condition. We

choose Y (1) = 0, and Y (0) = 0 almost surely, which satisfies the bounded assumption on

Y . This condition implies that any π ∈ Π satisfies Pareto optimality, hence Πo = Π.

Observe that the expression for C(π) corresponds to the risk associated with a classifier
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π(X) for classifying the sensitive attribute S with loss

l(S, π(X)) ∝ (p1 − S)π(X) =


p1 − 1 if S = 1, π(X) = 1

p1 if S = 0, π(X) = 1

0 otherwise .

.

We now proceed following some of the steps in Theorem 14.5 and Theorem 14.6 in

Devroye et al. (2013), but introducing modifications in the construction of the set of dis-

tributions under consideration and in the data-generating process due to the different loss

function and its dependence with P (S = 1) (which itself depends on the distribution of

(X,S)).3 We start by choosing D to be distributed as a Bernoulli random variable inde-

pendent of (X,S). As a result, (Y,D) are independent of (X,S). Therefore, since (Y,D) is

independent of (X,S) it suffices to focus on classifiers πn(X) constructed using information

(X1, S1), · · · , (Xn, Sn) only. The rest of the proof consists in constructing a distribution of

(X,S) such that the lower bound is attained. Recall that classifiers depend on X only and

not on S by assumption.

Consider first the case where (v − 1)/2 is an integer. The case where it is not follows

similarly to below and discussed at the end of the proof. We construct a family of distri-

butions for (X,S), defined F as follows: first we find points x1, · · ·xv that are shattered

by Πo. Each distribution in F is concentrated on the set of these points. A member in F

is described by v − 1 bits b1, · · · , bv−1. This is representated as a bit vector b ⊂ {0, 1}v−1.

Each bit vector that we consider is assumed to sum to (v − 1)/2, namely

v−1∑
i=1

bi =
v − 1

2
.

Assume that v − 1 ≤ n. For each vector b, we let X put mass m at xi, i < v, and mass

1− (v − 1)m at xv. This imposes the condition (v − 1)m ≤ 1, which will be satisfied. We

choose for all b that we consider P (S = 1) = p1 ∈ (δ, 1 − δ) which we choose later in the

3The lack of restriction on the error of the classifier represents a further difference.
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proof. Next, introduce the constant c ∈ (0, p1). Let U a uniform random variable on [0, 1],

S =


1 if U ≤ p1 − c+ 2cbi, X = xi, i < v

1 if U ≤ p1, X = xv

0 otherwise

.

Thus for X = xi, i < v, S is one with probability p1 − c or p1 + c, while for X = xv S is

one with probability p1. Now observe that the choice of S and the fact that P (S = 1) = p1

implies that

p1 =
v−1∑
i=1

m(p1 − c+ 2cbi) + p1(1−m(v − 1)) = (v − 1)mp1 + p1(1−m(v − 1)), (A.45)

since c
∑v−1

i=1 bi = cv−1
2

by the restriction on b ∈ B. The above expression is satisfied for any

m, so no restrictions on m are implied by the Equation (A.45). With a simple argument,

it is easy to show that one of the best rules4 for b is the one which sets

fb(x) =

 1 if x = xi, i < v, bi = 1

0 otherwise.

Such rule is feasible since it has VC-dimension v. Notice now that we can write for the

decision rule fb(x), E[l(S, fb(X))|X = xi] = −c for i < v, for fixed b. Observe now that we

can write for any πn, X ∈ {x1, · · · , xv−1} , for fixed b,

E[l(S, πn(X))|X]− E[l(S, fb(X))|X] ≥ 2c1{πn(X) 6= fb(X)},

since if πn(X) = 1 − fb(X), then E[l(S, 1 − fb(X))|X] = c. Therefore we can bound for

4A different which leads to the same objective is the one that classifies one also for X = xv. This would
be indifferent with respect to fb since the loss function at X = xv is always zero in expectation for either
prediction.
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any πn, and a fixed b

UnFairness(πn)− inf
π∈Πo

UnFairness(π) ∝ E[l(S, πn(X))]− inf
π∈Π

E[l(S, π(X))]

≥
v−1∑
j=1

2mc1{πn(xj) = 1− fb(xj)}

≥
v−1∑
j=1

2mc1{πn(xj) = 1− fb(xj)}.

(A.46)

Since we take the supremum over the class of distribution Pb ∈ F indexed by the bit-

vector b, it suffices to provide upper bound with respect to b being a random variable and

take expectations over b. We replace b by a uniformly distributed random variable B over

B ⊂ {0, 1}v−1, where B is the set of bit vectors which sum to (v − 1)/2. We observe that

for any t ≥ 0,

sup
(X,S)∈F

P
(

UnFairness(πn)− inf
π∈Πo

UnFairness(π) > t
)

= sup
b
P
(

UnFairness(πn)− inf
π∈Πo

UnFairness(π) > t
)

≥ Eb
[
1{UnFairness(πn)− inf

π∈Πo
UnFairness(π) > t}

]
(with random b)

≥ Eb
[
1
{ v−1∑

j=1

2mc1{πn(xj) = 1− fb(xj)} > t
}]

where the last inequality uses Equation (A.46) and the monotonicity of the indicator func-

tion. We can now write

Eb
[
1
{ v−1∑

j=1

2mc1{πn(xj) = 1− fb(xj)} > t
}]

=
1

|B|
∑

(x1,··· ,x′n,s1,··· ,sn)∈({x1,··· ,xv}×{0,1})2∑
b∈B

1
{ v−1∑

j=1

2mc1{πn(xj) = 1− fb(xj)} > t
} n∏
j=1

pb(x
′
j, sj)

with pb(x
′
j, sj) denoting the joint probability of x′j, sj. For a fixed b, define bc = (1 −
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b1, · · · , 1− bv−1). Observe that if b ∈ B, then bc ∈ B since we assumed that (v− 1)/2 is an

integer. Now observe that if
t

2mc
≤ (v − 1)/2, (A.47)

then

1
{ v−1∑

j=1

2mc1{πn(xj) = 1− fb(xj)} > t
}

+ 1
{ v−1∑

j=1

2mc1{πn(xj) = 1− fbc(xj)} > t
}
≥ 1

since it must be that either (or both) indicators are equal to one. Therefore for t
/

2mc ≤

(v − 1)/2, the last expression in the lower bound above is bounded from below by

1

|B|
∑

(x1,··· ,x′n,s1,··· ,sn)∈({x1,··· ,xv}×{0,1})2

∑
b∈B

1

2
min

{ n∏
j=1

pb(x
′
j, sj),

n∏
j=1

pbc(x
′
j, sj)

}
.

By LeCam’s inequality, we have that the above expression is bounded from below by (see

Page 244 in Devroye et al. 2013)

1

4|B|
∑
b∈B

(∑
(x,s)

√
pb(x, s)pbc(x, s)

)2n

.

Observe that we have for x = xv,

pb(x, 1) = pbc(x, 1) = p1(1−m(v − 1)), pb(x, 1) = pbc(x, 1) = (1− p1)(1−m(v − 1)).

For x = xi, i < v, we have

pb(x, s)pbc(x, s) = m2(p2
1 − c2), s ∈ {0, 1}.

Therefore, we obtain

∑
(x,s)

√
pb(x, s)pbc(x, s) = (1−m(v − 1)) + 2(v − 1)m

√
(p2

1 − c2)

= (1− (v − 1)m) + 2(v − 1)m
√

(p2
1 − c2).
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Hence we can write

1

4|B|
∑
b∈B

∑
(x,s)

√
pb(x, s)pbc(x, s) =

1

4

{
(1− (v − 1)m) + 2(v − 1)m

√
(p2

1 − c2)
}
.

Define F = m(v − 1)(p1 − c). Then we can write

1

4|B|
∑
b∈B

(∑
(x,s)

√
pb(x, s)pbc(x, s)

)2n

=
1

4

{
(1− (v − 1)m) + 2(v − 1)m

√
(p2

1 − c2)
}

=
1

4

{
1− F

p1 − c

(
1−

√
4p2

1 − 4c2
)}2n

.

We now choose p1 = 1/2. We can now follow Devroye et al. (2013), end of Page 244 and

write

1

4

{
1− F

p1 − c

(
1−

√
4p2

1 − 4c2
)}2n

=
1

4

{
1− F

p1 − c

(
1−
√

1− 4c2
)}2n

≥ 1

4

{
1− F

p1 − c
4c2
}2n

≥ 1

4
exp

(
− 16nFc2

1− 2c

/(
1− 8Fc2

1− 2c

))
,

where we used 1− x ≥ e−x/(1−x).

We now choose c = t
(v−1)m

, which satisfies Equation (A.47), and where we need the

condition that 0 < t ≤ (v−1)m
2

which we check later in the proof. We write

16nFc2

1− 2c

/(
1− 8Fc2

1− 2c

)
=

16nFc2

1− 2c− 8Fc2
.

Fix a constant h ∈ (0, 1) whose conditions will be discussed below together with the

conditions for t. Take t, h such that 1− 2c− 8Fc2 ≥ h ∈ (0, 1). Then it follows that (since

c = t
(v−1)m

)

16nFc2

1− 2c− 8Fc2
≤ 16nt2F

(v − 1)2m2h
.
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Hence, the lower bound reads as follows:

sup
(X,S)∈F

P
(

UnFairness(πn)− inf
π∈Πo

UnFairness(π) > t
)
≥ 1

4
exp

(
− 16nt2F

(v − 1)2m2h

)
.

Let 1
4

exp
(
− 16nt2F

(v−1)2m2h

)
= κ. By re-arranging the expression, we write with probability at

least κ, for some distribution in F , for all πn,

UnFairness(πn)− inf
π∈Πo

UnFairness(π) ≥

√
F (v − 1)2m2 log( 1

4κ
)

16nh
(A.48)

where we chose t =

√
F (v−1)2m2 log( 1

4κ
)

16nh
.

Next, we check the condition for t, h, and characterize the constants m,h, F . Recall

that the conditions are the following:

0 < t ≤ (v − 1)m

2
, 1− 2c− 8Fc2 ≥ h, c =

t

(v − 1)m
, F = m(v − 1)(

1

2
− c), 0 < m ≤ 1

v − 1
,

t =

√
F (v − 1)2m2 log( 1

4κ
)

16nh
, h ∈ (0, 1),

where the first condition on t follows from Equation (A.47). Take first h = F/8. Then the

first condition on t implies that n ≥ log(1/4κ). The second condition on h (with h = F/8)

is satisfied if the first inequality holds

1− F/8 ≥ c(2 + 4F ) ≥ c(2 + 8Fc)

since c ∈ (0, 1/2). Now, observe that F ≤ 1/2, hence it suffices to show that

c ≤ 1− 1/16

4
⇒

√
log( 1

4κ
)

2n
≤ 15

64
⇒ n ≥ C̄ log(1/4κ),

for a finite constant C̄. The proof completes since the remaining conditions can be satisfied

for an arbitrary choice of 0 < m < 1/(v − 1).

We are left to show that the claim holds if (v− 1)/2 is not an integer. For this case we
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follow the same steps of the proof where we construct a set of distributions F which puts

mass m on v − 2 xi, i < v − 1 and mass 1−(v−2)m
2

on the remaining xv−1, xv. We construct

a bit vector b ∈ B ⊂ {0, 1}v−2 with
∑v−2

i=1 bi = v−2
2

which must be equal to an integer since

v−1
2

is not. We construct (since v ≥ 3)

S =


1 if U ≤ p1 − c+ 2cbi, X = xi, i < v − 1

1 if U ≤ p1, X = xi, i ∈ {v − 1, v}

0 otherwise

,

while the remaining part of the proof follows similarly to above.

A.10 Regret bounds for |D(π)|, and |C(π)|

To obtain UnFairness bounds for unfairness being defined as eitherD(π) or C(π) in absolute

value it suffices to bound the following empirical processes

sup
π∈Π

∣∣∣|Ĉ(π)| − |C(π)|
∣∣∣, sup

π∈Π

∣∣∣|D̂(π)| − |D(π)|
∣∣∣.

We bound the first on the left-hand side while the second follows similarly. We write by

the reverse triangular inequality

sup
π∈Π

∣∣∣|Ĉ(π)| − |C(π)|
∣∣∣ ≤ sup

π∈Π

∣∣∣Ĉ(π)− C(π)
∣∣∣.

The rest of the proof follows similarly to Theorem B.3.

A.11 Proofs in Section 4.4

A.11.1 Proof of Proposition 4.6

For simplicity we assume that β0 = β1 = β ∈ [0, 1]p, while our reasoning directly extend to

different β0, β1. To analyze the computational complexity of the algorithm, we first, need to

compute the computational complexity of each operation needed to estimated W̄j,n. Note
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that each optimization problem to estimate W̄j,n is a linear program with p variables and

constraint β(j) ∈ [0, 1], 1 ≤ j ≤ p. Therefore, using standard arguments (Papadimitriou

and Steiglitz, 1998, Theorems 8.2, 8.5), each program admits an exact solution in O(pω)

running time, for a finite constant ω. There are
√
n many of such programs, with overall

running timeO(
√
npω). Consider now the optimization program in Equation (16). Suppose

first that g(x) = x. Then we can write the program as follow: for each constraint (i.e., each

αj with corresponding W̄j,n) in (B), we construct one program where (B) must hold for a

single αj only, and where we drop (C), (E) and replace (D) with β(j) ∈ [0, 1], 1 ≤ j ≤ p. We

have in total
√
n many of such programs. These programs are linear programs with p+ 1

constraints and p variables. Similarly to what discussed above, each of this program can

be solved with running time O(pω) for some finite ω. Once we solve each of this program,

the solution to Equation (16) is obtained by finding the smallest objective among the
√
n

many programs. The running time for finding the minimum from
√
n many elements is

O(
√
n). Therefore, the overall complexity of the optimization is O(

√
npω). Consider now

the case where g(x) = |x|. In such a case, for each sub-problem which substitute (B) in

Equation (16) with a single constraint for a given αj, we can write two sub-problems. The

first, is the optimization under the constraint that x ≥ 0 and the second is the optimization

under the constraint that x ≤ 0, with objective function multiplied by −1, where x denotes

the argument of the function g(·) (i.e.,
∑n

i=1 F̂iπ(Xi)). Again, each subproblem is a linear

program with computational complexity O(pω) which completes the proof.

A.12 Proof of Proposition 4.7

Note first that W̄ δ
j,n ≤ W̄j,n for all j, δ. Therefore, we obtain that the constraint in (B)

imposed when estimating π̂δλ is less restrictive than the constraint when solving Equation

(16). It follows that by construction of the algorithm and the early stopping time to

optimize UnFairness,

Vn(π̂δλ)− Vn(π̂λ) ≤ δ.
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We can then write

UnFairness(π̂δλ)− inf
π∈Πo

UnFairness(π) = UnFairness(π̂δλ)− Vn(π̂δλ)︸ ︷︷ ︸
(A)

+Vn(π̂δλ)− Vn(π̂λ)︸ ︷︷ ︸
(B)

+ Vn(π̂λ)−UnFairness(π̂λ)︸ ︷︷ ︸
(C)

+ UnFairness(π̂λ)− inf
π∈Πo

UnFairness(π)︸ ︷︷ ︸
(D)

.

We can now bound

(A) + (C) ≤ 2 sup
π∈Π

∣∣∣UnFairness(π)− Vn(π)
∣∣∣, (B) ≤ δ.

The rest of the proof follows similarly to the one of Theorem 4.4.

B Extensions and Mathematical Details

B.1 Comparison under strong duality

We now sketch the differences in the optimization problem with the one in Equation (9)

assuming strong duality for expositional convenience, and providing an intuition on the

result in Corollary 1 for π̃. Assuming strong-duality, the optimization problem of max-

imizing welfare under fairness constraint in Equation (9) can be equivalently re-written

as:

π̃ ∈ arg min
π∈Π

UnFairness(π), such that p1W1(π) + (1− p1)W0(π) ≥ λ(κ) (B.1)

for some constant λ(κ) ≤ W̄p1 which depends on κ. We now constrast Equation (B.1) to

our proposed approach (Equation (7)). Suppose first that λ(κ) = W̄p1 , i.e., π̃ is Pareto

optimal. Then the constraint in Equation (B.1) is stricter than the constraint in Equation

(7), since the latter case imposes that αW1(π)+(1−α)W0(π) ≥ W̄α, for some α, instead of

for a particular chosen weight (e.g., p1). As a result, π? leads to a lower level of UnFairness

whenever π̃ is Pareto optimal, since π? minimizes UnFairness under weaker constraints
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compared to π̃. When instead π̃ is not Pareto optimal, i.e., λ(κ) < W̄p1 , π̃ is Pareto

dominated by some other allocation ˜̃π. However ˜̃π leads to a larger UnFairness than π?,

while not Pareto dominating π?.

The key intuition is the following: under strong duality, the dual of π̃ corresponds

to minimize UnFairness for one particular weighted combination of welfare exceeding a

certain threshold. In contrast, our decision problem imposes the constraint that some

weighted combination of welfares exceeding a certain threshold. This difference reflects the

difference between the lexicographic preferences that we propose as opposed to an additive

social planner’s utility. It guarantees that whenever π̃ is Pareto optimal, its fairness is

dominated from the one under π?.

B.2 Cross-fitting with UnFairness

In this section we discuss cross-fitting with fairness. Two alternative cross-fitting proce-

dures are available to the researcher. The first one, consists in dividing the sample into K

folds and estimating the conditional mean m̂
(−k(i))
d,s (Xi) using observations for which S = s

only, after excluding the fold k corresponding to unit i (panel on the right in Figure B.1).

Formally, let i ∈ Ik ∩ S1 where Ik is the k-th fold of the data and S1 = {i : Si = s1}.

Let m̂
(−k(i))
d,s2

be an estimator obtained using samples not in the fold k, Ick ∩ Sc1 for which

Sc1 = {i : Si = s2}; for example by a random forest or linear regression of Yj onto Xj for

Sj = s2, and j /∈ Ik. Such an approach does not impose parametric restrictions on the

dependence of md,s on the attribute s, at the expense of shrinking the effective sample size

used for estimation. The second approach consists in further imposing additional paramet-

ric restrictions on the depends of md,s on s and using all observations in all folds except k

for estimating m̂
(−k(i))
d,s (Xi) (panel on the right in Figure B.1).
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Figure B.1: Graphical representation of cross-fitting under two alternative model formu-
lation. The light gray area is the training set, used to construct an estimator of m̂d,s=1,
whereas the darker gray area is an evaluation set, area in which a prediction of m̂d,s=1 is
computed.

S = 1S = 0

Ik

S = 1S = 0

Ik

B.3 Linear or quadratic constraints for the policy function space

representation

In this section we discuss mixed integer formualtions of probabilistic and deterministic

decisions rules. Consider first a deterministic decision rule of the form

Π =
{
πβ(X,S) = 1{X>β + Sβ0 > 0}, β ∈ B

}
.

Then we can write the constraint (A) in Equation (16) as (Kitagawa and Tetenov, 2018)

X>i β + sβ0

|Ci|
< zs,i ≤

X>i β + sβ0

|Ci|
+ 1, Ci > supβ∈B|X>i β|+ |β0|, zs,i ∈ {0, 1}.

Consider now the following probabilistic decision

Π =
{
πβ(X,S) = p11{X>i β + Sβ0 > 0}+ p01{X>β + Sβ0 ≤ 0}, p1, p0 ∈ [0, 1], β ∈ B

}
.

(B.2)

Then we can represent each decision variable as follows

zs,i = p1ξs,i + p0(1− ξs,i)
X>i β + sβ0

|Ci|
< ξs,i ≤

X>i β + sβ0

|Ci|
+ 1, Ci > supβ∈B|X>i β|+ |β0|, ξs,i ∈ {0, 1}.

where we introduced the additional variables ξs,i. We use this probablistic rule in the
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empirical application.

One last type of function class of interest is a linear probability rule of the following

form

zs,i = X>i β + β0Si, zs,i ∈ [0, 1]

which leads to fast computations due lack of integer variables in the program.

B.4 Extension: Additional Notions of UnFairness

B.4.1 Predictive Parity

Predictive parity has been discussed in Kasy and Abebe (2021) among others. Here we

consider its definition within the context of policy-targeting. Its notion requires additional

assumption for its implementation, assuming deterministic treatment assignments π(Xi) ∈

{0, 1} (i.e., T = {0, 1}). The notion reads as follows:

Ps(π) =
∣∣∣E[Y (1)

∣∣∣π(X) = 1, S = s
]
− E

[
Y (1)

∣∣∣π(X) = 1
]∣∣∣.

Larger values of Ps(π) increase UnFairness. Using the definition of the conditional expec-

tation, and using consistency of potential outcomes, the following lemma holds.

Lemma B.1. Let T = {0, 1}. Then following holds.

Ps(π) = (1− ps)
∣∣∣E
[
Y (1)1{Si = s}π(X)

]
psP(π(X) = 1|S = s)

−
E
[
Y (1)π(X)1{S = s′}

]
(1− ps)P(π(X) = 1|S = s′)

∣∣∣.
Proof of Lemma B.1. Using the definition of conditional expectation:

E
[
Y
∣∣∣π(X) = 1, S = s

]
= E

[ Y (1)1{S = s}π(X)

psP (π(X) = 1|S = s)

]
. (B.3)

We also write

E
[
Y
∣∣∣π(X) = 1

]
= psE

[
Y
∣∣∣π(X) = 1, S = s

]
+ (1− ps)E

[
Y
∣∣∣π(X) = 1, S = s′

]
.

29



Combining the expression with Equation (B.3) completes the proof.

Given two sensitive groups S = {0, 1}, the corresponding notion of UnFairness we

consider takes the following form:

P (π) ∝ P1(π)

1− p1

=
P0(π)

p1

. (B.4)

We consider a double-robust estimator which takes the following form:

V̂n(π) =
∣∣∣∑n

i=1 π(Xi)Si

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi, Si)

}
np1P(π(Xi) = 1|Si = 1)

−

∑n
i=1(1− Si)π(Xi)

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi, Si)

}
n(1− p1)P(π(Xi) = 1|Si = 0)

∣∣∣.
(B.5)

Observe that the estimator depends on the estimated conditional mean function and

propensity score, whereas ps and P(π(X) = 1|S = s) are assumed to be known. These

two components can be obtained, for instance from census data, since ps and P(π(X) =

1|S = s) only depend on the distribution of covariates and sensitive attributes. When-

ever P(π(Xi) = 1|Si = s) is replaced by its sampled analog Pn(π(Xi) = 1|Si = s) =

1
nps

∑n
i=1 π(Xi)1{Si = s}, we require that Pn(π(Xi) = 1|Si = s) is bounded away from zero

almost surely.

Theorem B.2 (Predictive parity). Let Assumptions 2.1, 4.1,4.2, 4.3 hold. Let either

UnFairness(π) be defined using the notion of Predictive (dis)-parity. Assume that P (π(X,S) =

1|S = 1), P (π(X,S) = 1|S = 0) ∈ (κ, 1 − κ) for all π ∈ Π, κ ∈ (0, 1). Then for some

constant c0 <∞, for any γ ∈ (0, 1), λ ≥ b
√

v log(2/γ)
n

, for a constant b > 0, independent of

the sample size with probability at least 1− 2γ,

UnFairness(π̂)− inf
π∈Πo

UnFairness(π) ≤ c0

√
log(2/γ)

n
+ c0

√
v

n
,

for a finite constant c0 <∞.

Remark 1 (Mixed-integer linear representation of Predictive Parity). Let P(π(Xi)|Si =

1) = 1
psN

∑N
i=1 π(Xi)Si whereN denotes the number of individuals whose census-information

(i.e., baseline covariates and sensitive attributes) are observed. The optimization problem
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can be formulated as a mixed-integer fractional linear program for π(X) satisfying a linear

representation. This follows after the linearization of the constraint (B), which can be

achieved by introducing 2N × n many additional binary variables. Since fractional lin-

ear programs admit a mixed-integer linear program representations (Charnes and Cooper,

1962), the optimization problem can be solved as a mixed integer linear program.

Proof of Theorem B.2. We write

E
[

sup
π∈Π

∣∣∣ P̂s(π)

1− ps
− Ps(π)

1− ps

∣∣∣]
≤ E

[
sup
π∈Π

∣∣∣∑n
i=1 π(Xi)Si

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi, Si)

}
np1P(π(X) = 1|S = 1)

− E
[
Y |π(X) = 1, S = 1

]∣∣∣]︸ ︷︷ ︸
(A)

+ E
[

sup
π∈Π

∣∣∣∑n
i=1 π(Xi)(1− Si)

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi, Si)

}
nP(π(X) = 1|S = 0)(1− p1)

− E
[
Y |π(X) = 1, S = 0

]∣∣∣]︸ ︷︷ ︸
(B)

.

We study (A) while (B) follows similarly. First, we write

(A) ≤ E
[

sup
π∈Π

∣∣∣∑n
i=1 π(Xi)Si

{
(Yi−m̂1(Xi,Si))Di

ê(Xi,Si)
+ m̂1(Xi, Si)− (Yi−m1(Xi,Si))Di

e(Xi,Si)
−m1(Xi, Si)

}
np1P(π(X) = 1|S = 1)

∣∣∣]︸ ︷︷ ︸
(I)

+ E
[

sup
π∈Π

∣∣∣∑n
i=1 π(Xi)Si

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi, Si)

}
np1P(π(X) = 1|S = 1)

− E
[
Y |π(X) = 1, S = 1

]∣∣∣]︸ ︷︷ ︸
(II)

.

We study (I) first. Define

Vn(π) =
1

np1

n∑
i=1

π(Xi)Si

{(Yi − m̂1(Xi, Si))Di

ê(Xi, Si)
+ m̂1(Xi, Si)−

(Yi −m1(Xi, Si))Di

e(Xi, Si)
−m1(Xi, Si)

}
.

We have

(I) ≤ 1

κ
E
[

sup
π∈Π
|Vn(π)|︸ ︷︷ ︸
(a)

]
.
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We write

(a) ≤ 1

δ
sup
π∈Π

∣∣∣ 1
n

n∑
i=1

SiDi(Yi −m1,Si(Xi))
( 1

e(Xi, Si)
− 1

ê(Xi, Si)

)
π(Xi, Si)

∣∣∣︸ ︷︷ ︸
(j)

+
1

δ
sup
π∈Π

∣∣∣ 1
n

n∑
i=1

( Di

ê(Xi, Si)
− 1
)

(m1,Si(Xi)− m̂1,Si(Xi))π(Xi, Si)Si

∣∣∣︸ ︷︷ ︸
(jj)

.

(B.6)

We study (j) and (jj) separately. We start from (j). Recall, that by cross fitting

ê(Xi, Si) = ê−k(i)(Xi, Si), where k(i) is the fold containing unit i. Therefore, observe that

given the K folds for cross-fitting, we have

∣∣∣ 1
n

n∑
i=1

SiDi(Yi −m1,Si(Xi))
( 1

e(Xi, Si)
− 1

ê(Xi, Si)

)
π(Xi, Si)

∣∣∣
≤

∑
k∈{1,...,K}

∣∣∣ 1
n

∑
i∈Ik

SiDi(Yi −m1,Si(Xi))
( 1

e(Xi, Si)
− 1

ê(−k(i))(Xi, Si)

)
π(Xi, Si)

∣∣∣. (B.7)

In addition, we have that

E
[∑
i∈Ik

SiDi(Yi −m1,Si(Xi))
( 1

e(Xi, Si)
− 1

ê(−k(i))(Xi, Si)

)
π(Xi, Si)

]
= E

[
E
[∑
i∈Ik

SiDi(Yi −m1,Si(Xi))
( 1

e(Xi, Si)
− 1

ê(−k(i))(Xi, Si)

)
π(Xi, Si)

∣∣∣ê(−k(i))
]]

= 0,

(B.8)

by cross-fitting. By Assumption 4.3, we know that

sup
x∈X ,s∈S

∣∣∣ 1

e(x, s)
− 1

ê(−k(i))(x, s)

∣∣∣ ≤ 2/δ2 (B.9)

and therefore each summand in Equation (B.7) is bounded by a finite constant 2/δ2. We

now obtain, using the symmetrization argument (Van Der Vaart and Wellner, 1996), and
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the Dudley’s entropy integral (Wainwright, 2019)

E
[

sup
π∈Π
| 1
n

∑
i∈Ik

SiDi(Yi−m1,Si(Xi))
( 1

e(Xi, Si)
− 1

ê(−k(i))(Xi, Si)

)
π(Xi, Si)|

∣∣∣ê(−k(i))
]
.
M

δ2

√
v/n.

(B.10)

We now consider the term (jj). Observe that we can write

(jj) ≤ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

( Di

ê(Xi, Si)
− Di

e(Xi, Si)

)
(m1,Si(Xi)− m̂1,Si(Xi))Siπ(Xi, Si)

∣∣∣︸ ︷︷ ︸
(v)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

( Di

e(Xi, Si)
− 1
)

(m1,Si(Xi)− m̂1,Si(Xi))π(Xi, Si)Si

∣∣∣︸ ︷︷ ︸
(vv)

.

(B.11)

We consider each term seperately. Consider (vv) first. Using the cross-fitting argument we

obtain

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

( Di

e(Xi, Si)
− 1
)

(m1,Si(Xi)− m̂1,Si(Xi))π(Xi, Si)Si

∣∣∣
≤

∑
k∈{1,...,K}

sup
π∈Π

∣∣∣ 1
n

∑
i∈Ik

( Di

pse(Xi, Si)
− 1
)

(m1,Si(Xi)− m̂(−k(i))
1,Si

(Xi))π(Xi, Si)Si

∣∣∣. (B.12)

Observe now that

E
[( Di

e(Xi, Si)
− 1
)

(m1,Si(Xi)− m̂(−k(i))
1,Si

(Xi))π(Xi, Si)Si

∣∣∣m̂(−k(i))
1,Si

]
= 0. (B.13)

Therefore, following the same argument discussed before,

E
[

sup
π∈Π

∣∣∣ 1
n

∑
i∈Ik

( Di

e(Xi, Si)
− 1
)

(m1,Si(Xi)− m̂(−k(i))
1,Si

(Xi))π(Xi, Si)Si

∣∣∣] . M

δ2

√
v

n
. (B.14)

We are now left to bound (v). We obtain that

(v) ≤

√√√√ 1

n

n∑
i=1

( 1

ê(Xi, Si)
− 1

e(Xi, Si)

)2

√√√√ 1

n

n∑
i=1

(m1,Si(Xi)− m̂1,Si(Xi))2. (B.15)
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Using Jensen inequality and Assumption 4.3 E[(v)] . n−1/2.

We now move to bound the expectation of (II). First, observe that by Lemma B.1,

and standard properties of the double-robust estimator, we have that

E
[ 1
p1n

∑n
i=1 π(Xi)Si

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi, Si)

}
P(π(X) = 1|S = s)

]
= E

[
Y (1)|π(X) = 1, S = 1

]
.

Using the symmetrization argument (see Van Der Vaart and Wellner (1996)), we have

(II) ≤ 2E
[

sup
π∈Π

∣∣∣ 1
p1n

∑n
i=1 π(Xi)σiSi

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi, Si)

}
P(π(X) = 1|S = s)

∣∣∣],
where {σi} are i.i.d. exogenous Radamacher random variables. Using the assumption that

P (π(X) = 1|S = s) ∈ (κ, 1− κ), we write

E
[

sup
π∈Π

∣∣∣ 1
p1n

∑n
i=1 π(Xi)σiSi

{
(Yi−m1(Xi,Si))Di

e(Xi,Si)
+m1(Xi, Si)

}
P(π(X) = 1|S = s)

∣∣∣]
≤ 1

κ
E
[

sup
π∈Π

∣∣∣ 1

p1n

n∑
i=1

π(Xi)σiSi

{(Yi −m1(Xi, Si))Di

e(Xi, Si)
+m1(Xi, Si)

}∣∣∣].
We now proceed using a standard argument. Using the fact that each summand in the

above expression are uniformly bounded, and Π has finite VC-dimension, using the Dudley’s

entropy integral bound, it directly follows that

E
[

sup
π∈Π

∣∣∣ 1

p1n

n∑
i=1

π(Xi)σiSi

{(Yi −m1(Xi, Si))Di

e(Xi, Si)
+m1(Xi, Si)

}∣∣∣] .√v

n

which concludes the proof.

B.4.2 Counterfactual envy-freeness

In this section we discuss estimation and guarantees for the counterfactual notion of fairness

in Section 5.
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We estimate A(·) as:

An(s, s′;π) =
1

np̂s

∑
i:Si=s

{
m̂1,s′(Xi)π(Xi, s) + m̂0,s′(Xi)(1− π(Xi, s))

}
− 1

n

n∑
i=1

{
Γ̂1,s,iπ(Xi, s)− Γ̂0,s,i(1− π(Xi, s))

}
.

(B.16)

Whenever we aim not to discriminate in either direction, we take the sum of the effects

A(s1, s2; π) and A(s2, s1; π),5 and define counterfactual envy-freeness and its estimator as

E(π) = A(1, 0;π) +A(0, 1;π), Ê(π) = An(1, 0;π) +An(0, 1;π). (B.17)

Assumption B.1. Assume that for some ζ > 0, E
[(
m̂d,s1(Xi(s2)) −md,s1(Xi(s2))

)2]
=

O(n−2ζ),∀s1, s2 ∈ {0, 1}, d ∈ {0, 1}.

Assumption B.1 states that the estimator of the conditional mean function for each sen-

sitive attribute and treatment status s, d ∈ {0, 1}, must converge to the true conditional

mean function in mean-squared error at some arbitrary rate 2ζ > 0. Here, we require

convergence in l2 for a given sensitive attribute conditional on the opposite sensitive at-

tribute, due to the particular notion of fairness considered.6 Examples include (i) linear

regression models, of the form md,s(x) = xβs, with βs being potentially high-dimensional,

and bounded covariates; (ii) local polynomial estimators (Fan and Gijbels, 1996).

Theorem B.3. Let Assumptions 4.1-4.3, 5.1 and B.1 hold. Let UnFairness(·) = E(·) and

V̂n(·) = Ê(·). Then for some constants 0 < b, c0 < ∞ independent of the sample size, for

any γ ∈ (0, 1), λ ≥ b(
√
v +

√
log(2/γ) + 1), N =

√
n, with probability at least 1− 2γ,

UnFairness(π̂)− inf
π∈Πo

UnFairness(π) ≤ c0

√
v

n2ζ
+ c0

√
log(2/γ)

n
.

The proof is in Appendix B.4.3. A corollary of Theorem B.3 is that under the parametric

rate of convergence of the conditional mean function, the regret bound scales at rate

n−1/2. Interestingly, the convergence rate is of order slower than n−1/2 for non-parametric

5Such an approach builds on the notion of “social envy” discussed in Feldman and Kirman (1974).
6Namely, to estimate fairness, we need to extrapolate relative to the opposite group.
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estimators compared to the notions of UnFairness discussed in Section 4. The slower

convergence rate is because counterfactual envy-freeness requires estimating the conditional

mean function on the population with attribute S = s1 while averaging over the covariates’

distribution with the opposite attribute, therefore requiring extrapolation. This result

showcases the trade-off in the choice of a counterfactual notion of unfairness relative to

predictive ones.

B.4.3 Envy-freeness UnFairness: Proofs

Lemma B.4. Under Assumption4.1, 4.2, 4.3, 5.1, B.1, the following holds: with probabil-

ity at least 1− γ ,

sup
π∈Π

∣∣∣A(s, s′; π)−An(s, s′; π)
∣∣∣ ≤ cM

δ2

√
log(2/γ)

n
+
c

δ
n−η +

√
v

n
(B.18)

for a universal constant c <∞.

Proof of Lemma B.4. We consider the case where s′ 6= s, whereas s′ = s follows trivially.

Observe that we can write

sup
π∈Π

∣∣∣A(s, s′;π)−An(s, s′;π)
∣∣∣ ≤

sup
π∈Π

∣∣∣EX(s)

[
Vπ(X(s),s)(X(s), s′)

]
− 1

n

n∑
i=1

(1{Si = s}
p̂s

m̂1,s′(Xi)π(Xi, s) +
1{Si = s}

p̂s
m̂0,s′(Xi)(1− π(Xi, s))

)∣∣∣︸ ︷︷ ︸
(A)

+ sup
π∈Π
|Ŵs′(π)−Ws′(π)|︸ ︷︷ ︸

(B)

.

(B.19)

The term (B) is bounded as discussed in Lemma A.3. Therefore, we are only left to discuss
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bounds on (A). To derive bounds in such a scenario, we first observe that we can write

sup
π∈Π

∣∣∣EX(s)

[
Vπ(X(s),s)(X(s), s′)

]
− 1

n

n∑
i=1

(1{Si = s}
p̂s

m̂1,s′(Xi)π(Xi, s) +
1{Si = s}

p̂s
m̂0,s′(Xi)(1− π(Xi, s))

)∣∣∣
≤ sup

π∈Π

∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi, s)− E
[1{Si = s}

ps
m1,s′(Xi)π(Xi, s)

]∣∣∣︸ ︷︷ ︸
(I)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

m0,s′(Xi)(1− π(Xi, s))− E
[1{Si = s}

ps
m0,s′(Xi)(1− π(Xi, s))

]∣∣∣︸ ︷︷ ︸
(II)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(1{Si = s}
p̂s

m̂1,s′(Xi)−
1{Si = s}

ps
m1,s′(Xi)

)
π(Xi, s)

∣∣∣︸ ︷︷ ︸
(III)

+ sup
π∈Π

∣∣∣ 1
n

n∑
i=1

(1{Si = s}
p̂s

m̂0,s′(Xi)−
1{Si = s}

ps
m0,s′(Xi)

)
(1− π(Xi, s))

∣∣∣︸ ︷︷ ︸
(IV )

.

We discuss (I) and (III), whereas (II) and (IV) follow similarly. Observe first that by

Assumption 4.1 and the bounded difference inequality, with probability 1− γ,

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi, s)− E
[1{Si = s}

ps
m1,s′(Xi)π(Xi, s)

]∣∣∣
≤ E

[
sup
π∈Π

∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi, s)− E
[1{Si = s}

ps
m1,s′(Xi)π(Xi, s)

]∣∣∣]+ C̄
M

δ

√
log(2/γ)/n

for a constant C̄ < ∞. Under Assumption 5.1 each summand is centered around zero.

Using the symmetrization argument (Van Der Vaart and Wellner, 1996), we have

E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

1{Si = s}
ps

m1,s′(Xi)π(Xi, s)− E
[1{Si = s}

ps
m1,s′(Xi)π(Xi, s)

]∣∣∣] ≤
2E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σi
1{Si = s}

ps
m1,s′(Xi)π(Xi, s)

∣∣∣]
where σi are i.i.d. Radamacher random variables. Since m1,s is uniformly bounded and

similarly ps is bounded, and by Assumption 4.1, we obtain by the properties of the Dudley’s
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entropy integral (Wainwright, 2019),

E
[

sup
π∈Π

∣∣∣ 1
n

n∑
i=1

σi
1{Si = s}

ps
m1,s′(Xi)π(Xi, s)

∣∣∣] ≤ C̄
M

δ

√
v/n

for a universal constant C̄ < ∞. We now move to bound (III). Using the triangular

inequality and Holder’s inequality, we obtain

(III) ≤ 1

n

n∑
i=1

1{Si = s}
ps

∣∣∣m1,s′(Xi)− m̂1,s′(Xi)
∣∣∣ (B.20)

The above bound is deterministic and it does not depend on π. Observe now that by

consistency of potential outcomes and covariates

1

n

n∑
i=1

1{Si = s}
ps

∣∣∣m1,s′(Xi)− m̂1,s′(Xi)
∣∣∣

=
1

n

n∑
i=1

1{Si = s}
ps

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣ ≤ 1

nδ

n∑
i=1

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣.

(B.21)

We now separate the contribution of each of the K folds using in the cross-fitting algorithm.

Namely, we define

1

nδ

n∑
i=1

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣ ≤ ∑

k∈{1,...,K}

1

nδ

∑
i∈Ik

∣∣∣m1,s′(Xi(s))− m̂(−k(i))
1,s′ (Xi(s))

∣∣∣
(B.22)

where Ik denotes the set of indexes in fold k, and m̂
(−k(i))
1,s′ denotes the estimator obtained

from all folds except k. Next, we bound the following term using Liaponuv inequality:

1

n

∑
i∈Ik

E
[
|m1,s′(Xi(s))− m̂1,s′(Xi(s))|

]
.

√
E
[
|m1,s′(Xi(s))− m̂1,s′(Xi(s))|2

]
≤ cn−η.

(B.23)

The last inequality follows by Assumption B.1, for a universal constant c < ∞. Finally,

we discuss exponential concentration of the empirical counterpart. By boundeness of m̂ in
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Assumption 4.3, we have

sup
x∈X

∣∣md,s′(x)− m̂d,s′(x)
∣∣∣ ≤ 2M. (B.24)

By the bounded difference inequality, with probability at least 1− γ,

1

n

∑
i∈Ik

∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣ ≤ E

[∣∣∣m1,s′(Xi(s))− m̂1,s′(Xi(s))
∣∣∣]+ 4M

√
log(2/γ)/n.

(B.25)

Combining the above bounds, the proof completes.

Corollary. Theorem B.3 holds.

Proof. This follows from Theorem B.3 and Lemma A.2.

B.5 Multi-action policies

In this subsection, we discuss how our results extend to multi-action policies. Using The-

orem 1 in Zhou et al. (2018), assuming a bounded entropy integral with respect to Π

(Assumption 3 in Zhou et al. (2018)), and assumptions in Theorem 4.2, it is easy to show

that with probability at least 1− γ

∣∣∣Wd(π)− Ŵd(π)
∣∣∣ = O

(κ(Π)√
n

)
+ o(1/

√
n) +O

(√ log(2/γ)

n

)
where κ(Π) =

∫ 1

0

√
log(N (Π, ε2))dε and N (Π, ε) is the covering number for the function

class Π.7 Here the first two terms follow directly from the bound on the Rademacher

complexity in Zhou et al. (2018) and standard symmetrization arguments (Van Der Vaart

and Wellner, 1996), while the last term follows from the bounded difference inequality

(Wainwright, 2019) and leverages bounded estimated conditional mean and propensity

score.8 Given such concentration result, it is easy to show that the rest of our proofs

7The reader may refer to Wainwright (2019) and Definition 4 in Zhou et al. (2018) for more discussion.
8Bounded estimated nuisance functions is not required if we interpret our results as asymptotic in the

spirit of Athey and Wager (2021).
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of Theorems 4.1, 4.2, 4.3, do not require binary actions, and follow without additional

modifications for a finite number of actions.

C Numerical Studies and Empirical Application: Fur-

ther Results and Details

C.1 Empirical Application

Estimation details We control for confounding of the treatment assignment by estimat-

ing the probability of treatment using a penalized logistic regression, where we condition

on the non-Caucasian attribute, gender, the average score, years to graduation, whether

the individual had previously had entrepreneurship activities, the startup region (which

a dummy since only two regions are considered), the degree (either engineer or business)

and the school rank. We estimate the outcome using a penalized logistic regression, after

conditioning on the above covariates, and any interaction term between gender, treat-

ment assignment, and a vector of covariates, which include years to graduation, prior

entrepreneurship, startup region, and the school rank. We estimate treatment effects using

a doubly robust estimator. We use cross-fitting with five folds in our estimation.

Additional results for probabilistic treatment assignments We also consider in

our analysis the class of probabilistic assignment rules, which assign treatments with a

probability decision as in Equation (B.2). Results are collected in Figure C.1, where we

observe that the set of probabilistic decision Pareto dominates the determinitic ones up-to

a small optimization error.

C.2 Numerical Studies

In this subsection, we include additional results for the numerical studies. In Figure C.2

we report the computational time for different number of covariates. The figure shows that

the linear probability rule and optimal tree present better scalability than the maximum
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Figure C.1: Empirical application. (Discretized) Pareto frontier under probabilistic linear
policy rule estimated through MIQP. Dots denote Pareto optimal allocations. Red dots
(circle) correspond to Π1, blue dots (triangle) to Π2 and black dots (square) to Π3. The
gray area denotes the set of allocations dominated by a deterministic decision rule.

score, while the four methods can still be feasibly implemented for n = 600. Figure C.3

presents results for the different function classes for p = 3 (instead of p = 4) covariates.

Figure C.4 reports welfare comparisons for the disparate impact method for female and

male participants. Table 2 reports comparisons for n = 400. In the table, we observe

that a smaller sample size tends to decrease the performance of each method, as expected.

We still observe that the proposed method leads to the largest fairness across all designs.

While for n = 600, the proposed method is never Pareto dominated, here also the method

is never Pareto dominated with a single exception occurring for the maximum score, where

we observe a slight dominance for welfare but not fairness which might occur with small

sample sizes. In all remaining cases, the proposed method leads to strictly larger welfare

for the female students with respect to all competitors.
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Methods Linear Prob Max Score 1 Max Score 2 Opt Tree
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Figure C.2: Computational time in seconds for different number of covariates p and sample
sizes n. Here, Linear Prob is a linear probability rule estimated via linear programming,
maximum score is estimated with mixed-integer linear program and optimal tree via ex-
haustive search. The maximum score algorithm presents two different stopping times (Max
Score 1 and Max Score 2).

Methods Linear Prob Max Score 1 Max Score 2 Opt Tree
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Figure C.3: p = 3. Running time, unfairness and welfare as a function of the sample
size and covariates. Here, Linear Prob is a linear probability rule estimated via linear
programming, maximum score is estimated with mixed-integer linear program and optimal
tree via exhaustive search. The maximum score algorithm presents two different stopping
times (Max Score 1 and Max Score 2).
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Figure C.4: Difference between females and males’ welfare for the method Disparate impact
in Table 2, with κ = 1. The left-hand side panel shows the empirical difference (showing
that the constraint is attained) and the right-hand side panel the population counterpart.

Table C.1: Statistical disparity (Unfairness), welfare of male (W0) and female (W1) par-
ticipants of the proposed method (Fair Targeting) and of the alternative procedures in
percentage points. Weighted average maximizes a weighted average of females and males’
welfare with weight α = 1/2; Utilitarian average uses instead α = En[S]; Constrained Max
maximizes welfare under fairness constrain and Disparate Impact maximizes welfare under
constraints on disparate welfare impact between the two groups. n = 400, p = 4. The
constraint is κ = 10 for the methods in the fourth and fifth row and κ = 1 for the last two
rows.

Linear Rule Maximum Score Tree

UnFair W0 W1 UnFair W0 W1 UnFair W0 W1

Fair Targeting −19.7 12.2 6.1 −46.4 12.7 5.3 −32.7 12.7 6.0
Weighted Average 20.7 15 4.4 7.5 15.3 4.3 −1.9 14.5 5.5
Utilitarian Average 7.5 15.3 4.3 7.5 15.3 4.3 7.5 15.3 4.3
Constrained Max −8.5 14.6 4.6 −18.7 14 5 −16.8 14.5 5
Disparate Impact 6.3 12.8 4.6 −0.2 14.4 5.5 2.9 14.1 5
Constrained Max2 −12.3 14.2 4.7 −21.7 13.7 4.9 −19.3 14.5 5
Disparate Impact2 −1.6 11.2 4.8 −6.2 14.2 5.4 −2.2 13.9 5.2
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